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Abstract

Modern data mining has evolved largely as a result of e�orts by computer scientists to address

the needs of \data owners" in extracting useful information frommassive observational data sets.

Because of this historical context, data mining to date has largely focused on computational

and algorithmic issues rather than the more traditional statistical aspects of data analysis. This

paper provides a brief review of the origins of data mining as well as discussing some of the

primary themes in current research in data mining, including scalable algorithms for massive

data sets, discovering novel patterns in data, and analysis of text, Web, and related multi-media

data sets.

1 Introduction

The phrase \data mining" has had a varied history within the past 30 to 40 years. In the 1960's,

as digital computers were beginning to be applied to data analysis problems, it was noticed that if

one searched long enough (using the computer) that one could always �nd some relatively complex

model to �t a data set arbitrarily well. This could of course happen even if the resultant model were

entirely spurious and did not represent any true underlying structure, e.g., if the data were entirely

random in nature (Armstrong, 1967). Thus, terms such as \data mining" and \data dredging"

were coined to describe such activities, along with related terms such as \data snooping" and \data

�shing" (Selvin and Stuart, 1966; Lovell, 1983). In �elds such as econometrics the term \data

mining" still has quite a negative connotation (e.g., Leamer, 1978; Hendry, 1995, Chapter 15.1).

Nonetheless, despite this history, by the early 1990's the term \data mining" was somewhat

independently adopted by computer scientists to describe algorithmic and database-oriented meth-

ods that search for previously unsuspected structure and patterns in data. The data sets involved

are often (but not always) massive in nature. A precise de�nition of this notion of data mining

is quite di�cult to pin down, since as currently practiced it encompasses quite a wide variety of

data analytic techniques and methods without any necessarily single coherent theme. Nonetheless,

it is fair to say that much of this modern work in data mining can be characterized as placing a

signi�cant emphasis on the role of algorithmic and computational issues in data analysis, rather

than on more traditional statistical issues such as inference and estimation. Another distinction is

that data mining is almost always practiced in a retrospective manner on observational data, and

does not involve considerations of experimental design and related concepts.

In this paper we will adopt this modern (computer science) usage of the term data mining. We

will largely focus on data mining as evidenced by research published in the mainstream conferences

and journals in the �eld, e.g., the annual ACM International Conference on Knowledge Discovery

and Data Mining, the annual ACM Conference on Management of Data (SIGMOD), and the

Journal of Data Mining and Knowledge Discovery. It is currently fashionable to attach the term

data mining to research papers or product descriptions that involve data analysis in any form. For

example, consider a medical research project which uses the term data mining in the title of the

study or paper to describe building classi�cation trees (for example) on a relatively small data set

for medical diagnosis. Such papers are not of primary interest in this review since they can equally

well be viewed as the application of relatively well-known ideas in applied statistics.

In this review paper we will instead focus on themes and strands of work which can be viewed as

relatively unique to data mining and which complement traditional statistical methods. The paper
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begins in Section 2 with a brief review of general resources in the area of data mining and continues

in Section 3 with a brief history of the �eld. The following three sections discuss some of the main

themes in data mining as currently practiced, focusing in particular on scalable algorithms (Section

4), �nding patterns in data (Section 5), and text and Web data applications (Section 6). Section

7 contains concluding comments. As with any general review, many of the comments contains in

this paper are subjective in nature and cannot be backed up with theorems!

2 Other Reviews and Resources for Data Mining

In terms of other general reviews of data mining, there are several which complement the viewpoint

of this paper. From a statistical perspective Hand (1998) and Glymour et al. (1996, 1997) discuss

aspects of the general relationship between data mining and statistics. Fayyad et al. (1996) provide

an overview of the state of the �eld in 1996. In the area of automated machine discovery, Valdez-

Perez (1999) discusses the role of automated discovery systems in science. A number of recent books

have also appeared on data mining, largely emphasizing business and marketing applications of data

mining algorithms and intended primarily for a non-technical business audience (e.g., Adrians and

Zantige (1996), Berry and Lino� (1997)). Other texts such as those of Weiss and Indurkhya (1997)

and Witten and Frank (1999) provide more of a research-oriented viewpoint on data mining, but

from a largely machine learning (computer science) perspective. To date there is no text available

which treats data mining in a statistical context. The online Web site (and associated newsletter)

www.kdnuggets.com provides many online resources covering both commercial and research activity

in data mining.

The evolution of research in data mining can be traced through a series of workshops and

conferences entitled \Knowledge Discovery in Databases" (KDD). The �rst few workshops (e.g.,

Piatetsky-Shapiro, 1991) were relatively small (approximately 50 attendees) and were motivated

by a realization among machine learning and AI researchers that technology was beginning to

change the nature of data collection and analysis. \Data owners" such as scientists, businesses, and

medical researchers, were able to gather, store, and manage previously unimaginable quantities of

data due to technological advances and economic e�ciencies in sensors, digital memory, and data

management techniques. As data volumes and archives began to grow very rapidly in the 1990's,

so too did interest from data owners in the research conducted under the KDD umbrella. In 1994

the �rst International Conference on Knowledge Discovery and Data Mining was held (Fayyad

and Uthurasamy (1995)). It has evolved into the primary annual forum for data mining research

(Simoudis and Han, 1996; Heckerman, Mannila, and Pregibon, 1997; Agrawal and Stolorz, 1998;

Chaudhuri and Madigan, 1999; Ramakrishnan and Stolfo, 2000). Edited research papers from the

early KDD workshops were published in two edited volumes, Piatetsky-Shapiro and Frawley (1991)

and Fayyad et al. (1996), providing snapshots of early research in the �eld.

3 A Brief History of Data Mining

It is worthwhile to begin by reviewing brie
y the evolution of modern data mining. From a statis-

tical perspective perhaps the most noticeable feature of data mining research is the emphasis on

computational aspects of data analysis, in concert with a relative lack of emphasis on traditional
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statistical concepts such as su�cient statistics, likelihood, or model diagnostics. This \computa-

tional culture" is a direct consequence of the fact that data mining has been (to date) largely driven

by computer scientists.

3.1 Data Mining and Machine Learning

Within computer science, two particular sub�elds have contributed most heavily to the development

of data mining in the past 10 years, namely, machine learning and databases. Machine learning

involves the study of how machines and humans can learn from data and has been an important

component of research in arti�cial intelligence (AI) since the inception of AI in the 1950's. Early

work in this �eld was strongly linked to theories in cogntive science, trying to build algorithms

and machines which could adapt to data in a manner thought to be similar to human learning

(see Russell and Norvig (1995), Chapter 1, for a review). In more recent years (since the early

1980's) much research in machine learning has shifted from modeling how humans learn to the

more pragmatic aims of constructing algorithms which learn and perform well on speci�c tasks

(such as prediction). Naturally this has led to a much greater overlap with applied statistics, with

particular emphasis on classi�cation (discrimination) techniques, but again with somewhat of a

computational 
avor. For example, machine learning research has traditionally placed an emphasis

on the human-interpretability of any model which is learned from data, leading to much work

on predictive models such as trees and rules which can (for example) be readily understood by

clinicians in a medical context, at least for relatively simple trees and rule sets.

The work of Quinlan (1993) on decision tree classi�ers, largely paralleling the more statistically

motivated work of Breiman et al. (1984) on CART, is a good example of how similar methodolo-

gies and algorithms were pursued largely independently by researchers in both machine learning

and statistics. Within machine learning, arti�cial neural networks (Bishop, 1995; Ballard, 1997),

nearest-neighbour classi�ers (Aha, Kibler, and Albert, 1989; Atkeson, Schaal, and Moore (1997)),

simple conditional independence models such as naive Bayes (Duda and Hart, 1973; Domingos

and Pazzani (1997)), and (more recently) support-vector machines (Scholkopf, Burges, and Smola,

1999), have all been widely researched. In recent years, statisticians and machine learning re-

searchers have sought out common ground, such that the boundaries between applied statistics and

machine learning are more blurred than in the past (e.g., Michie, Spiegelhalter, and Taylor, 1994;

Bishop, 1995; Ripley, 1996; Mitchell 1997). It is noteworthy, however, that for largely historical

reasons certain standard statistical techniques, such as logistic regression for example, have received

little attention in the machine learning literature. In addition, there are many aspects of statistics

which are largely absent from the machine learning literature. Because of this lineage, researchers

in machine learning (and subsequently in data mining) typically have formal backgrounds in com-

puter science but may have little background in modern statistical methods other than standard

undergraduate coursework. Thus, to a statistician, many papers on data mining may appear to be

written in a foreign language, with much discussion of algorithms and computational complexity

but relatively little in terms of mathematical characterization of the statistical aspects of the prob-

lem. Nonetheless, despite the nature of the presentation, these papers can contain useful ideas and

methodologies for statistically-oriented researchers.

The signi�cance of machine learning to present-day data mining lies in the fact that many of

the researchers involved in data mining, and many of the algorithms being used in data mining,
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have their intellectual roots in machine learning. This partly explains (for example) the prevalence

of tree-based and rule-based algorithms in data mining papers and software tools, and the relative

paucity of many of the more traditional statistical concepts such as parameter estimation, maximum

likelihood, hypothesis testing, and so forth. Just as the interests of certain applied statisticians

in the 1990's led to signi�cant \crossover" work between computer science and machine learning

(e.g., Geman, Bienenstick, and Doursat, 1992; Breiman, 1996, Friedman, 1997), there are similar

elements of crossover work between statisticians and data miners in data mining (e.g., Du Mouchel

et al. (1999)), although to date on a smaller scale. In the commercial sector, vendors of statistical

software packages have been quick to note the advantages of including the phrase \data mining"

in their product names and promotional literature, although it is not obvious that these packages

contain much that is conceptually di�erent from the older \non data mining" versions.

3.2 Data Mining and Database Research

Another strand of data mining research emerged in the 1990's within the database research com-

munity, somewhat independently and largely in parallel with developments in machine learning.

Database research got underway as a research �eld in the 1960's as computer scientists realized

that applications which relied on transaction processing (such as banking, airline reservations, and

so forth) could not be readily handled using simple collections of relatively independent and loosely

coupled �les. The introduction of relational database concepts (Codd, 1970) and high-level data

models (Chen, 1976) proved to be major conceptual breakthroughs in the �eld, providing general

and principled frameworks for data modeling and access. Topics such as updating the database

in a systematic manner, answering structured queries about the data, controlling access and se-

curity in the context of multiple users, and so forth, became the foundations of modern database

management. By the late 1980's and early 1990's, relational database technology had successfully

established itself in the commercial sector, i.e., many businesses and organizations were now us-

ing these relational models and tools to manage their data. Worth noting is the fact that these

relational database systems were never explicitly designed to support data analysis tasks. Instead

they are primarily designed for the purposes of storage, query, and transaction management, i.e.,

supporting day-to-day operations of organizations that handle large volumes of data (e.g., airlines,

banks, hospitals, retail organizations, etc.).

In transactional business environments (such as banks, etc.) interest in data warehousing began

to grow in the early 1990's (Inmon, 1996), namely maintaining a historical repository of all trans-

actions which had ever been recorded. Database researchers quickly realized that now not only did

their customers want to store, manage, and access their data in a systematic fashion, but now they

also wished to be able to analyze it. This analysis could not take place in the traditional statistical

fashion since these data sets were typically far too large to be handled by conventional statistical

software packages. Thus was born the concept of data analysis algorithms which are designed to

operate directly on relational databases, forming the main component of modern database-oriented

research in data mining.

The paper by Agrawal, Imielinski, and Swami (1993) on association rule mining is probably the

earliest example of such work, demonstrating how simple association rules can be \mined" from

a relational database in an e�cient manner. An example of an association rule is \if a individual

purchases bread and milk then they are likely to also purchase butter with probability 0.8." This
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early work on association rules spurred signi�cant interest in the database research community, and

data mining attained an increasingly signi�cant presence at database research conferences such as

SIGMOD by the late 1990's. This strand of work is largely characterized by an emphasis on very

e�cient data structures and algorithms for operating on data which is not resident in main memory

(typically on a disk, perhaps stored in a relational database), and searching for sets of simple local

patterns such as association rules. More recently there has been more infusion of statistical ideas in

the database research community, involving for example development of computationally e�cient

algorithms for algorithms such as classi�cation trees and mixture modeling. For example, Gehrke

et al. (1999) report substantial computational and memory e�ciencies in their implementation

of CART using special-purpose data structures, and apply their algorithm to data sets involving

millions of points. In a similar fashion, Bradley, Fayyad, and Reina (1998) describe a heuristic algo-

rithm for an implementation of the Expectation-Maximization (EM) algorithm applied to Gaussian

mixture modeling on massive data sets, which seeks to minimize the number of passes through the

data set.

Just as the in
uence of machine learning research on data mining has led to somewhat of a

bias towards classi�cation problems, the database in
uence has led to an emphasis on the data

access aspects of analyzing massive data sets. Overall this has been a positive contribution in the

sense it has led to an increased awareness among data analysts that the traditional approach of

viewing the data as existing in a single \
at �le" often does not scale very well to massive data sets.

For example, data on a group of medical patients may well be distributed across di�erent tables,

located on physically di�erent storage devices. The beauty of database technology is that the user

is isolated from the details of where such data are stored. The user simply issues queries (in a

formal representation language such as the Structured Query Language (SQL)) and the database

management system then takes care of the details of �nding and returning the relevant data in as

e�cient a manner as possible.

In the context of data mining research one of the larger issues to be faced is whether this general

\standard interface" approach can support sophisticated statistical modeling. At present the answer

is no, in the sense that a conventional query language such as SQL provides a relatively awkward

and potentially ine�cient interface for performing the underlying mathematical operations inherent

to statistical modeling (e.g., matrix operations for linear regression). Thus, it is somewhat of an

open question as to whether it is better to develop special purposes \SQL-like" languages for data

mining or instead to focus on algorithmic ideas (such as sampling) which minimize interaction with

the database and perform traditional statistical analyses using traditional tools and environments

on reduced data sets which can �t in main memory. While there are various trade-o�s involved it is

again worth noting that the existing database interfaces (such as SQL) were not originally designed

for supporting statistical model building.

In next three sections we discuss speci�c strands of research in data mining which may be of

interest to researchers involved in medical data analysis, and which involve concepts and techniques

which are largely outside the mainstream statistical literature (at least at present).
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4 Scalable Algorithms for Massive Data Sets

4.1 General Challenges Imposed by Massive Data Sets

As mentioned earlier, one of the main challenges in dealing with massive data sets is the scaling

e�ects which often occur as data sets grow in size. For simplicity, assume we have an N � p data

matrix with p measurements (variables, columns) characterizing each of N objects (individuals,

rows). When we talk about massive data sets we often implicitly assume we are talking about very

large values of N (e.g., data on several hundred thousand patients) but it is important to note that

many of these massive data sets also may contain large numbers of measurements (p) as well, e.g.,

up to several hundred test results on patients in a medical study. The time complexity of a data

analysis algorithm is typically expressed in a worst-case sense as a function of N and p and any

other parameters which may enter into the algorithm or the modeling, e.g., O(Np) for an algorithm

which is linear in both N and p. Algorithms whose time complexity scales poorly as a function of N

(e.g., as N2 or N3) are often completely impractical for large data sets, e.g., hierarchical clustering

algorithms typically scale as O(N2) in both time and memory. Sensitivity to p is slightly better

since p is typically not as large asN : O(p2) is often �ne for many problems, but O(p3) or higher will

begin to be problematic for p of the order 103 or greater. Thus, data mining researchers interested

in massive data set applications often focus on algorithms which scale in the \near-linear" range in

N and usually no worse than p2 in p (see Huber (1997) for further discussion).

The other relevant aspect of data analysis for large data sets concerns the physical storage

location of the data relative to the central processing unit (CPU). In simple terms, we can think of

two primary types of storage media (memory) in a computer system|in reality there can be other

distinctions such as cache memory, tape-memory etc, but here we just focus on this simpli�ed

viewpoint. Primary memory consists of random-access memory (RAM) and has the bene�t of

allowing relatively fast random access of any bytes stored in RAM, on the order of 10�7 to 10�8

seconds with current technology. Speci�cally, this is how long it takes the system to bring the

data from memory to the CPU, after which a computation can be performed. Secondary memory

consists (for our purposes) of disk storage. The access time here (how long it takes to access a

random location on the disk) is on the order of 10�2 seconds. There are many other issues involved

here, and storage technology is constantly changing, but nonetheless this relative di�erence in access

time between primary and secondary memory is fairly fundamental and is predicted to remain on

the order of 104 to 105 (Gray and Shenoy, 2000). An analogy would be that if the data in primary

memory are thought of as being on the bookshelf in your o�ce within 1 meter of your hand, the

data in secondary memory are e�ectively 100 kilometers away!

Thus, in determining the time complexity above, we can think of the physical location of the

data (whether primary or secondary memory) as a�ecting the overall complexity by a multiplicative

constant proportional to the average access time, e.g., if the algorithm requires one computation per

data point, and each data point is accessed randomly, then the time taken by the algorithm will be

proportional to cN , where N is the number of data points and c is the time taken to access the data

point (to bring it to the processor). This is somewhat of a simpli�cation, but illustrates the main

point that algorithms which frequently access the disk will be much slower than algorithms which

operate on data entirely in main memory. If we can organize the data so that it can be sequentially

scanned from the disk then the cost of disk access decreases, since sequential scanning of a disk
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can be carried out much more e�ciently than random access of the same amount of data. But

many widely used data analysis algorithms either repeatedly access di�erent subsets of the data

in an unpredictable manner (such as classi�cation trees) or require multiple passes through the

entire data set (e.g., applications of the EM algorithm). Even if such algorithms scale reasonably

in N and p, while they may run in reasonable time on data in main memory they will typically be

impractical for large data sets which exceed main memory capacity.

Of course what constitutes small or large depends on the context. It is quite easy to now have 1

Gbyte (109 bytes) of RAM (primary memory) on a modern workstation (compared to machines with

only 64 kilobytes of RAM 20 years ago). The secondary memory problem arises if one's data set is

too large to be read from disk into available primary memory. For example, many retail transaction

data sets and many image data sets are in the terabyte range (1012 bytes). Clearly, such data sets

are well beyond the realm of what most statisticians are used to thinking about and the rules of

data analysis for such data sets may be di�erent both from an organizational and mathematical

viewpoint. An important statistical issue, which we will only mention in passing here, is the fact

that as data sets become this large, homogeneity assumptions (such as independent and identically

distributed measurements) become less reliable. There is relatively little work in data mining

focusing on such statistical aspects of massive data sets, although it seems clearly that statistical

methods such as hierarchical models may be ideally suited to deal with such heterogeneity.

4.2 Scalable Versions of Existing Algorithms

The primary consequence of the above discussion on memory is that a naive implementation of

many data analysis algorithms will spend a large fraction of time waiting for data to be transferred

from disk when faced with massive data sets. One approach to this problem in data mining has

been to develop new versions of existing data analysis algorithms which provably return the same

results as the original algorithm, but which involve data management strategies which minimize

the overall amount of time spent accessing data. An example of this general approach is that of

Gehrke et al. (1999) who propose a family of algorithms called BOAT (Bootstrapped Optimistic

Algorithm for Tree Construction). The BOAT approach uses two scans through the entire data set.

In the �rst scan an \optimistic tree" is constructed using a small random sample from the full data

(and which can �t in primary memory). The second scan then takes care of any di�erences between

the initial tree and the tree which would have been built using all of the data: the resulting tree

is then the same tree that the naive algorithm would have constructed (in a potentially ine�cient

manner). (The details of how this is achieved in two scans is beyond the scope of this paper,

involving various clever data structures to keep track of tree-node statistics). By explicitly focusing

on how to deal with data in secondary memory this approach allows well-known algorithms to be

scaled-up to massive data sets in a relatively e�cient manner. For example, Gehrke et al. report

�tting classi�cation trees to 9-dimensional synthetically-generated data sets with 10 million data

vectors in about 200 seconds. In a similar vein, the work of Moore and Lee (1998) on cached

su�cient statistics for multi-variate categorical data takes advantage of clever data structures to

e�ciently store information on a full data set in a greatly reduced form. Computational speed-

ups of 50 to 5000-fold on various classi�cation algorithms (compared to naive implementation of

the algorithms) have been reported (Moore, 1999), where again the �nal model returned by the

algorithm is exactly the same as that which would have been returned by the naive implementation.
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However, there are many algorithms which are not so amenable to scaling in this manner.

Iterative algorithms such as EM may require many scans through the full data set to converge, and

full scans may be quite expensive. Thus, researchers have turned to heuristic algorithms which are

scalable to massive data sets but cannot be guaranteed to produce the same result as the original

naive algorithm. For example, Bradley, Fayyad, and Reina (1998) describe a heuristic algorithm

for scaling both the k-means clustering algorithm and EM-based Gaussian mixture modeling to

massive data sets which are not resident in primary memory. In their approach, the algorithm

samples the data to �nd regions of high density and then gradually constructs the cluster model or

mixture model while minimizing scans over the full database.

4.3 Novel Scalable Algorithms

A di�erent approach to developing scalable data mining algorithms has been to invent new data

analysis algorithms which can be easily supported by conventional database interfaces. The best

known example in this category is the afore-mentioned framework of association rules for transac-

tion data. A transaction data set typically consists of N transactions recorded over time. Each

transaction consists of a set of individual activities or purchases which occurred during a single

\session," e.g., a list of items purchased at a retail store, a list of �nancial transactions conducted

during a single session at an automated teller machine, or a list of prescription medicines authorized

by a doctor after examining a patient. Thus, for each of the N transactions the data set typically

contains the list of items \transacted," the names or identi�cation numbers of the persons involved,

the time and date, and other details such as the price of individual items and so forth.

A simple view of such data is as a large binary N � p matrix, where there are p individual

items, and there is a 1 in entry (i; j) if item j was involved in transaction i, and 0 otherwise. Thus,

this matrix is typically very sparse, e.g., in retail environments we may have p = 50; 000 individual

products (items) that one could purchase, but a typical transaction may only involve on the order

of 10 of these products. An association rule consists of a simple statement of the following form:

IF items � are purchased, THEN item j is also purchased with con�dence p (1)

where � is a set of items (columns in the matrix), not including item j, and p is usually interpreted

as the conditional probability p(jj�), i.e., the conditional probability of item j being purchased

given that items � were purchased. The joint probability p(�; j) is often referred to as the support.

Both the support and con�dence of a rule are estimated empirically from the data.

The basic idea behind association rule algorithms is to �nd all association rules in the data

which have support above some threshold tS and con�dence above some threshold tC , e.g., tS = 0:1

and tC = 0:8. Sets of items which have joint probability greater than the support threshold are

known as frequent itemsets. To �nd all itemsets of size k one can take advantage of the fact that

for an itemset of size k to be frequent, all its subsets of size k � 1 must also be frequent (a simple

consequence of joint probability). Thus, given a list of frequent itemsets of size k � 1, one can

generate a candidate list of itemsets of size k by checking that all subsets of itemsets of size k

are themselves frequent. This process of generating candidate itemsets is carried out based on the

itemsets alone, and does not involve scanning the data. Once the candidate itemsets of size k have

been found, the database is scanned to �nd the actual empirical support for each of the candidate

itemsets. Since counting is a relatively simple and standard operation for databases, this can be
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carried out in a computationally e�cient manner (e.g., linear in N and p). The algorithms typically

search the rule-space in a systematic manner, starting at itemsets of size k = 1 and incrementally

increasing k, where moving from k to k + 1 involves both the generation of candidate itemsets

and the scanning of the database to �nd those that are frequent. Typically for sparse data (and

a support threshold value tS that is not \too large") the number of frequent itemsets will be zero

above a relatively small k value, e.g., k � 10. After all frequent itemsets are found, the algorithm

makes one �nal pass through the database to determine which of the frequent itemsets correspond

to association rules with con�dence above tC . Agrawal et al. (1996) report results on synthetic data

involving 1000 items and up to 10 million transactions. They empirically demonstrate on these

data sets that the computation time scales up linearly as a function of the number of transactions.

Similar results have since been reported on a wide range of sparse transaction data sets and many

variations of the basic algorithm have been developed (e.g., Brin et al. (1997, 1999)).

The work on association rules di�ers from more traditional statistical analysis of binary data

in two signi�cant aspects. Firstly, the emphasis is on patterns (in the form of rules) rather than on

global models such as a log-linear model. The algorithms produce a set of rules or patterns, which

are local in the sense that they apply to speci�c regions of the p-dimensional multi-variate space.

Because the rules are local and evaluated individually, there is no notion of how the set of rules can

be combined in a coherent manner for interpretation or prediction. In other words, since the rules

are found individually, there is no attempt made by the algorithm to integrate them into a model,

e.g., for the purposes of prediction. One approach here is to view the rules as constraints on a large

p-dimensional contingency table and use iterative proportional �tting to construct joint probability

models which are consistent with these constraints (Pavlov, Mannila, and Smyth (1999)). The

resulting model can then be used for prediction. The generalization of this idea is to extract simple

summaries of the data in a computationally e�cient manner (e.g., based on counting operations)

and then to build a model from the resulting summary data.

The second non-traditional aspect of association rules is the emphasis on computational e�-

ciency rather than on the interpretation of the results. It is fair to say that in published work on

association rules that most of the emphasis in evaluating di�erent algorithms is placed on com-

putational e�ciency (e.g., run-time as a function of N or p) with little or no emphasis on the

interpretation of the actual rules returned. This points to a potential problem with the application

of such methods in general, namely, that users with little knowledge of statistics may interpret

the association rules in an inappropriate manner, e.g., perhaps mistaking correlation for causation.

Indeed, while association rules have been one of the primary success stories in data mining and

are now available in various data mining software toolkits, it is di�cult to �nd any speci�c pub-

lished reference which describes a successful application of the method to a real problem, i.e., the

question can be asked as to what association rules are good for exactly? The answer may be that

the method is primarily a computationally e�cient exploratory data analysis technique for massive

transactional data sets.

Novel scalable algorithms also exist for other types of data analysis. For example, the BIRCH

algorithm of Zhang, Ramakrishnan, and Livny (1998) provides a scalable approach to clustering,

which is similar in spirit to k-means, but which is essentially a new clustering algorithm in its own

right.
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4.4 Other Approaches to Scaling

There are a number of other general approaches to developing scalable algorithms which have been

proposed in data mining, e.g.,

� The obvious idea of running the algorithm on a smaller random sample of the full data set

is often used in practice, especially for data analysis tasks involving iterative and interactive

phases of model-building. Note that merely generating a random sample from a large database

stored on disk may itself be a non-trivial task from a computational viewpoint.

� Du Mouchel et al. (1999) propose a statistically-motivated methodology for \data-squashing"

which amounts to creating a set ofM weighted \pseudo" data points, whereM is much smaller

than the original number N , and where the pseudo data points are automatically chosen by

the algorithm to mimic as closely as possible the statistical structure of the original larger

data set. The method is empirically demonstrated to provide one to two orders of magnitude

reduction in prediction error on a logistic regression problem compared to simple random

sampling of a data set. This is similar in spirit to ideas in Moore and Lee (1998), Bradley,

Fayyad, and Reina (1998) and Pavlov, Mannila, and Smyth (1999), namely generating a

smaller approximate representation of the original large data set which in some sense matches

the statistical characteristics of the original data set as closely as possible. One advantage of

this general approach is that once the reduced data set is created, the original data set can in

e�ect be \thrown away" and computationally intensive visualization or model-building (e.g.,

using cross-validation methods for model and parameter selection) can take place entirely on

the reduced data set in main memory.

� For non-stationary data sets which are collected over time, an online recursive approach is

often quite e�ective, i.e., \pipelining" the data through the analysis system as it arrives

and recursively updating model parameters in an online adaptive fashion. Cortes and Preg-

ibon (1998) describe an impressive system at AT&T which adaptively updates estimates on

whether a telephone line is a business or a residence, for about 350 million customers per

night, based on about 300 million records of daily phone calls. Logistic regression models are

trained o�ine (on numbers whose business/residence classi�cation is known) and the prob-

ability of a number being a business is modeled by a logistic regression model with input

variables based on characteristics of calls, such as time of day, length of calls, etc.

� Provost and Kolluri (1999) describe a variety of other techniques for scaling up to massive

data sets, including technology-driven approaches such as using parallel computing for data

analysis problems which can be parallelized.

5 Pattern Discovery Algorithms

Another general area of work in data mining has focused on searching for unexpected and inter-

pretable patterns (in a somewhat more general sense than association rules) on data sets which are

large enough that they are not amenable to visualization but are not necessarily in the massive cat-

egory as described earlier (e.g., high-dimensional categorical data sets which �t in main memory).

Typically these methods use various measures (such as entropy-based measures) to quantify how
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informative a particular rule or pattern may be relative to background knowledge (Silberschatz and

Tuzhilin, 1996), where background knowledge is usually expressed in a very simple form such as

prior probability distributions on individual variables.

An early example of such work was the RX discovery project of Blum (Blum, 1982; Blum and

Walker, 1986). The RX system searched through a subset of a data set of patient records to �nd

candidate hypotheses such as \A precedes B in time, and A is correlated with B." The most interest-

ing such hypotheses were then tested on the entire data set to evaluate their statistical signi�cance.

As with association rules, this type of unconstrained search raises some important concerns from

a statistical viewpoint. The issue of multiple-testing is a real concern when searching through a

large set of potential hypotheses in an automated fashion since there is a non-zero probability that

some non-existent association will appear signi�cant just by chance. The probability of incorrectly

accepting such a spurious hypothesis rises as more and more hypotheses are tested. In addition,

in many of these systems there appears to be an implied notion of causality, for example in the

way the correlation information is presented as rules such as \if A then B." For naive users of such

systems the di�erence between correlation and causation may not be apparent and the potential

for misuse and misinterpretation is signi�cant. Other more subtle dangers, such as the presence of

hidden variables and Simpson's paradox, are discussed in Glymour et al. (1996, 1997).

Despite the potential pitfalls of unfettered automated \discovery" algorithms, the general idea

of having a computer search a large database for unexpected patterns is certainly worthwhile as long

as there is some human input into the process, and can legitimately be viewed as a form of large-

scale semi-automated exploratory data analysis. A variety of machine learning and data mining

algorithms have expanded on this general idea (Quinlan, 1987; Smyth and Goodman, 1992; Segal

and Etzioni, 1994; Cohen, 1995; Domingos, 1996). The \patient rule induction method" (PRIM) of

Friedman and Fisher (1999) provides a general statistical framework for rule induction, with broad

applicability to multivariate data with mixed categorical and continuous-valued variables (many rule

induction algorithms can only deal with categorical variables). The algorithm can be thought of as

�nding local \boxes" (hyper-rectangles) in a multi-dimensional space where some objective function

of interest is maximized. As an example, one might have 20 demographic variables measured on

medical patients with an additional binary class label indicating presence or absence of some medical

condition. The objective function in this case could be de�ned as the log-odds that an individual

has the condition, given that they lie within a particular box. The algorithm searches for \boxes"

by shrinking the box boundaries in speci�c dimensions so as to greedily maximize or minimize

the objective function within the box. Since the box boundaries are de�ned to be parallel to the

variable axes, they can be interpreted as simple thresholds, and a box can be expressed in the form

of a simple rule consisting of a conjunction of threshold conditions on variables on the left-hand

side (e.g., \IF X � 3:2 and 0:2 � Y � 0:7 and Z � 1:8") and a condition expressed in terms of the

mean value of the objective function within the box on the right hand side (e.g., \THEN E[f] =

5.3"). The algorithm �nds the �rst box, removes it from the multivariate space, then searches for

the best box in the remaining space, and so on in an iterative manner, in an attempt to \cover"

the input space. Fisher and Friedman (1999) illustrate interesting applications of the method to

a multivariate geological data set and a consumer marketing data set. Note that this particular

algorithm is not intended to be scalable in the sense described earlier, i.e., as described it is primarily

intended for application to data sets which reside in main memory.

This general theme of discovering local patterns (rather than global models) has emerged in
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several di�erent strands of work in data mining. For example, Mannila, Toivonen, and Inkeri

Verkamo (1995) describe formal methods for representing sequential patterns in sequences of events

and then develop search algorithms that are similar in spirit to association rule algorithms for

e�ciently �nding such patterns which occur frequently in large event sequence data sets. A typical

pattern might be that the event A OR B always precedes (within some time window) event C with

probability p, where A;B and C are individual event types. The authors report that the method

was applied to �nding patterns in log-�les of telecommunication alarms and the resulting patterns

were considered useful by domain experts.

Bay and Pazzani (1999) describe contrast sets, a framework for determining statistically signif-

icant di�erences between two or more groups in a d-dimensional multivariate catagorical data sets.

A contrast set consists of a conjunction of k variables and values, 1 � k � d, which are statistically

di�erent across the groups. For example, applying this technique to a UC census data set, and

comparing individuals with PhD degrees versus individuals with Bachelor's degrees, the algorithm

discovered several interesting di�erences. Individuals in the PhD group were about 3 times more

likely to work over 60 hours per week than the Bachelor's group, but were twice as likely to earn

a salary greater than $50,000 per annum. An interesting aspect of this problem is the huge search

space involved, i.e., there are an exponential number of possible contrast sets. Bay and Pazzani

describe a variety of heuristic search techniques for sysematically searching the space of hypotheses

(candidate contrast sets). The multiple hypothesis testing problem is addressed by using modi�ed

Bonferroni corrections for signi�cance testing.

These are but a few of a large class of data mining techniques for discovering local patterns

from data sets. These patterns typically only \cover" a portion of the input space (e.g., PRIM

�nds local boxes within the full multi-dimensional space). It is not entirely clear how to evaluate

these methods in the standard statistical framework, since there is usually no direct notion of

how one can generate predictions from these patterns. Instead, the methods appear to have more

in common with exploratory data analysis techniques, and could potentially be very useful in

uncovering previously unknown relationships and structure in data. Having said this, it is frequently

the case in practice that very large numbers of patterns are produced by these algorithms of which

only a small subset of these are actually of interest or useful. The classic example is an algorithm

which \discovers" from a database of medical patient records that all patients who are pregnant

are also female. This is a valid relationship, but is trivial in the sense that it is already well-known.

There has been some work in data mining on how patterns can be evaluated relative to a set of

prior beliefs (e.g., see Padmanabhan and Tuzhilin (1998)) but it is fair to say that this is an area

where there is much room for improvement.

6 Text and Multi-Media Mining

A signi�cant recent focus of data-mining activity has involved the application of data mining

concepts to online collections of text documents and multi-media objects such as images, video,

audio, and so forth. Of interest here from a statistical viewpoint is the application of statistical

concepts (such as population variability) to objects which are not necessarily best characterized by

�xed-dimensional vector representations. The World-Wide-Web (WWW) is of course a major focus

of attention in its own right. Phrases such as \text-mining" and \Web-mining" are often used for
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these activities, although in many cases the techniques used appear to be fairly direct extensions

and combinations of earlier ideas in the �eld of information retrieval (e.g., Van Rijsbergen, 1979)

and applied statistics.

In the �eld of information retrieval the research focus has traditionally been on the following

problem: �nd the documents (from a large corpus) which are most relevant to a speci�c query

posed by a human to the system. The phrase \document" is interpreted broadly and can range

from single paragraphs, to Web pages, to entire books. A widely used technique for solving this

retrieval problem is to represent all queries and documents as individual term-vectors. A term

can be a single word or phrase, and a term-vector is a d-dimensional vector of such terms, where

component i is 1 if term i is present in the query or document and 0 otherwise (there are more

general ways to do this, but this is the essential idea). Thus, in e�ect, documents and queries are

reduced to points in a d-dimensional space and any of a variety of distance functions can be used to

determine the similarity of queries and documents. Of course this simple term-vector representation

loses a considerable amount of information compared to the original document, e.g., the relative

position and context of individual terms are lost in the conversion to vector form. Nonetheless,

this relatively simple vector-space approach works reasonably (and surprisingly) well and has been

widely adopted in current information retrieval research (Witten, Mo�at, and Bell (1999)).

Text data mining (insofar as it can be de�ned at this point, see Hearst (1999)) di�ers from

information retrieval in that it can be viewed as the process of automated or semi-automated

discovery of knowledge from text. As an example, unsupervised clustering algorithms can be

used on collections of documents (perhaps represented as term-vectors) to discover which sets of

documents are most closely related (at least in a term-vector sense). More speci�cally, hierarchical

clustering algorithms can be used to automatically produce a taxonomy of documents. This can

provide a practical alternative to manual cataloging of large document collections (e.g., in Web

applications) since a human can simply assign labels to the clusters determined by the algorithm

without having to pre-de�ne what the taxonomy should be (e.g., Cutting et al. (1992)). This type of

semi-supervised (or semi-automated) discovery appears to be quite a useful framework in general for

the way in which humans actually perform data mining, i.e., rather than a fully-automated system

which autonomously discovers patterns of interest, having a semi-automated process involving

the human in interpretation and evaluation of patterns discovered by the algorithm. An early

application of the idea of text mining is the work of Swanson (1987) who developed a system for

automatically discovering links between previously disconnected strands of research in the medical

literature. The system uses chains of implication within the medical literature to automatically

search for hypotheses for causes of rare diseases (Swanson and Smalheiser (1994, 1997)).

In the context of Web-based data analysis, Chakrabarti et al. (1999) describe a general class of

algorithms which treat the Web as a large graph, with links from one page to another represented

as directed edges in this graph. Their approach estimates \authority" and \hub" weights for each of

a set S of candidate Web pages which have already been retrieved on the basis of being potentially

relevant to a given search term (a query). A page has a high authority weight if many good

hubs point to it, and a page has a high hub weight if it points to many good authority pages.

An authority page is intended to capture the notion of a page which is authoritative on a given

subject, while a hub page is intended to be a page which contains collections of links to authorities.

The de�nition of authority and hub weights specify a system of recursive equations since authority

and hub weights depend on each other. The two sets of solution weights are in fact the principal
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eigenvectors of AAT and ATA, where A is the adjacency matrix of the graph de�ned by S. The set

of documents S are then ranked using the resulting weights and returned to the user. In related

work, Kumar et al. (1998) demonstrate how the concepts of hubs and authorities can be used to

automatically discover \cybercommunities," i.e., groups of Web page authors who share common

interests.

The Web appears particularly well-suited to exploratory data mining ventures since it is rela-

tively poorly understood and quite complex. For example, understanding navigation patterns of

Web users is of considerable interest in e-commerce and network tra�c contexts. Cadez et al.

(2000) describe the application of mixtures of Markov models to modeling the sequences of page

requests from users visiting a large commercial Web site over a 24-hour period. Each Web page at

the site is categorized into one of approximately 18 categories. Thus, each user is represented by a

discrete-valued sequence of page requests, where the sequences are of di�erent lengths for di�erent

users. Approximately 1 million users were then clustered into 50 groups using the EM algorithm,

each group represented by a Markov model, describing 50 qualitatively di�erent sets of navigation

patterns.

The ubiquity and availability of Web-related data is likely to lead to increasing interest from

a data mining viewpoint in Web-related data sets. This type of data analysis poses a number of

interesting challenges to traditional statistical methods since the data sets tend to be heteroge-

nous and multi-modal (e.g., text, images, etc.), highly structured (the connectivity of Web pages),

non-stationary (Web pages and their usage changes continually) and massive. Much of this work

has relevance to medical research since medical data can also be viewed as highly structured,

multi-modal, and non-stationary in nature, i.e., test results, time-series, diagnostic images, text an-

notations, and so forth. However, to date there has been relatively little data mining work directed

at these types of data sets in medical contexts, other than standard applications of regression and

classi�cation algorithms for predictive modeling.

7 Conclusions

In this review we have discussed aspects of data mining which are somewhat distinct from traditional

statistical research, with a particular emphasis on

� scalable data analysis algorithms that can operate e�ciently on data which reside outside of

main memory,

� algorithms which search for local patterns in data (rather than global models), and

� algorithms and techniques for non-traditional data sources such as document and image col-

lections and the Web.

The utility of any of these techniques in a medical research context is not yet clear. Nonetheless,

as medical data sets become larger, more heterogeneous, and contain more complex structure,

at least some of these concepts from data mining may play a useful role in medical data analysis

tasks. For example, pattern-�nding algorithms such as PRIM could be quite useful for retrospective

exploratory analysis of clinical trials data, keeping in mind the potential dangers of data-dredging

mentioned earlier.
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We noted throughout that data mining as currently practiced has its roots in computer science,

rather than in statistics. More speci�cally, data mining has inherited many of the concepts and

techniques underlying classi�cation-oriented algorithms which were prevalent in machine learning

during the 1980's and 1990's. It is also strongly in
uenced by research in the database area, where

traditionally the emphasis has been on how to manage data rather than on how to interpret or

analyze it. These \cultural biases" can be expected to become less pronounced as more statisticians

and application-speci�c experts become involved in the data mining fray. However, it is nonetheless

important that researchers who have traditionally relied on statistical methods in their work, be

aware of the \computational" viewpoint which tends to prevail in data mining. Data mining o�ers

several new and interesting techniques for data analysis on a grand scale, but it also requires a

\marriage" with more fundamental statistical techniques in order to be successfully used in real-

world applications. As more statisticians become involved in data mining we can expect to see

more cross-fertilization of both statistical and computer science concepts occurring in data mining

research.
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