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Abstract

This paper presents a unifying probabilistic framework for clustering individuals or systems
into groups when the available data measurements are not multivariate vectors of fixed
dimensionality. For example, one might have data from a set of medical patients, where
for each patient one has different numbers of time-series observations, each time-series of
different lengths. We propose a general model-based framework for clustering heterogeneous
data types of this form. We discuss a general Expectation-Maximization (EM) procedure
for clustering within this framework and outline how it can be applied to clustering of
sequences, time-series, histograms, trajectories, and other non-vector data. We show that a
number of earlier algorithms can be viewed as special cases within this unifying framework.
The paper concludes with several illustrations of the method, including clustering of two-
dimensional histograms of red blood cell data in a medical diagnosis context, clustering of
proteins from curves of gene expression data, and clustering of individuals based on their
sequences of Web navigation.



Table 1: An example of individuals characterized by Web navigation sequences.

User1|Sessionl1 |2 3 2 2 3 3 3 1 1 1 3 1 3 3 3 3 1 2 3
Session2 |3 3 3 1 1 1

User2 | Session 1 |7 7 7 7 7 7 7

User3|Session1 |1 5 1 1 5 1 5 1 1 1 1 1 1 1 1 1 1 5
Session1 |5 1 1 5
Session 3|1 3 3 1 5 1 1 1 1

1 Introduction

Clustering is a fundamental and widely applied methodology in understanding and exploring
large data sets. Clustering algorithms are typically applied to vector measurements of fixed
dimension. For example, we may have a d measurements on a set of medical patients and
we represent the measurements on individual 7 as a d-dimensional vector. For such data
there are a wealth of different clustering methods available, both model-based methods
(e.g., Fraley and Raftery, 1998) and distance-based methods (e.g., Jain and Dubes, 1986).

In this paper we are interested in the problem of clustering individuals given observed
data about the individuals, where the observed data does not naturally occur in vector form
(we elaborate on this below). We use the word “individuals” in a broad sense; it can encom-
pass humans, animals, organisms, organizations, natural phenomena, mechanical systems,
and so forth. Specific examples include clustering individuals based on their observed Web
browsing behavior (Cadez et al., 2000), clustering animals given behavioral observations
(Haccou and Meelis, 1992), clustering extra-tropical cyclones based on their temporal evo-
lution (Blender et al., 1997), and clustering genes from expression data (Eisen et al., 1998).
Clearly there is a notion of each individual in a sense representing a dynamic system and
we wish to cluster these systems based on observations of their dynamic behavior.

Standard vector-based clustering techniques are not directly applicable to this type of
clustering problem since the data arises in non-vector form (e.g., sequences, time-series,
trajectories, etc) and we can have different amounts of observed data for different individu-
als. Table 1 shows an example of such data. The data represent categorized page requests
from traces of Web navigation for different individuals. FEach individual is characterized
by different sessions (different sequences) and each of these sequences vary in length. We
would like to be able to cluster individuals into groups based on their observed navigation
behavior—but it is not at all obvious how one would go about this in a principled man-
ner. Our goal in this paper is to formulate a general model-based clustering framework for
clustering individuals when the data are non-homogeneous as in this example.

2 Background and Related Work

One approach to clustering in this context is the “feature-vector” approach, namely, to
reduce the observed data to feature vectors of fixed dimensionality and use standard multi-
variate clustering techniques to cluster individuals given this representation. For example,
Blender et al (1997) represent extra-tropical cyclones as a concatenation of 3 days worth
of (z,y) latitude-longitude pairs, spaced at 6-hour intervals, to yield a 24-dimensional rep-
resentation of each cyclone. The k-means clustering algorithm was then applied in this



24-dimensional space to find clusters of cyclones. Similarly, Eisen et al. (1999) represent
gene expression data from different time-course experiments as fixed-dimensional vectors.
Agglomerative hierarchical clustering is then applied to find clusters of genes using a vector
distance measure. Although interesting scientific insights were produced in both of these
cases, we argue that this “vector methodology” is not necessarily appropriate or adequate
for clustering dynamic behavior. In particular, for sequential or temporal data, the con-
version to vector form necessarily incurs a loss of information (e.g., in the examples above
the temporal evolution of cyclones and genes (respectively) is not explicitly retained in the
vector representation).

Another general approach to this problem is to define pairwise distances between all
individuals in some manner (e.g., edit-distance for sequences) and then use distance-based
clustering methods (e.g., hierarchical). Difficulties here arise with defining effective distance
measures for complex problems. For example, if different individuals have different amounts
of data (e.g., varying numbers of sequences per individual) there may be no principled way
to directly account for this multiplicity of information via a distance function.

We propose instead a general probabilistic methodology for handling these issues, based
on the framework of generative mizture models. This probabilistic framework is particularly
useful for problems of this type since it allows us to directly address the two problems
mentioned above of (1) modeling non-vector data in its “native” form, and (2) handling
multiplicities of data sizes and data types across individuals.

Special cases of the model-based probabilistic framework presented in this paper have
been developed earlier for specific classes of data types and cluster models. In particular,
the concept of using a generative model for clustering non-vector data has been indepen-
dently pursued in several different contexts. For example, in clustering sequences, Poulsen
(1990) introduced a particular form of Markov mixtures and an EM algorithm for modeling
heterogeneous behavior in consumer purchasing data. More general versions of Markov mix-
tures were subequently independently developed by both Smyth (1997, 1999) and Ridgeway
(1997), including a general EM framework for learning in this context. Clustering of re-
gression curves has been investigated by Spath (1979), DeSarbo, Oliver, and Rangaswamy
(1989), Wedel and Steenkamp (1991), and in a more general non-parametric form by Gaffney
and Smyth (1999).

The work presented here represents a generalization of all of the above ideas within a
single unified framework. Our work is more general in the sense that we explicitly discuss
the case when different individuals have different amounts of data, which is an important
factor in many practical applications. We note that once we define a proper likelihood over
the data of interest, then specification of any specific EM algorithm (for any particular type
of model) follows in a direct manner from the general principles of EM (e.g., Dempster,
Laird, and Rubin, 1977; McLachlan and Krishnan, 1997). In fact this EM algorithm is
quite similar to the “standard” EM algorithm, with the exception that different individuals
have different effects on the estimation process depending on whether they have more or
less observations (this is not surprising: see Section 4.3). Thus, our EM framework will
be rather straightforward to any readers familiar with EM in general—for these readers we
wish to emphasize the generality of the approach as evidenced by the diverse applications
(Section 5). For readers less familiar with model-based clustering and EM in general, the
goal of the paper is to demonstrate that a large number of non-trivial clustering problems
can be elegantly handled within this model-based EM framework.



3 A Generative Mixture-Based Cluster Model

We propose the following generative framework for model-based clustering:

An individual is randomly drawn from the overall population (universe) and is indexed
by the letter ¢ (the index represents the “individual”).

The individual is assigned to one of K clusters, 1 < k < K, with probability p(c; = k),
Ypplei=k)=1,1<k < K, where we use ¢; to indicate the cluster membership of
individual .

Each cluster k£, 1 < k < K, has a data generating model p;(D|O;), where O are the
parameters of the probability distribution pg.

Data D; is now generated for an individual ¢ by a data generating probability model
p(D;]|Oy), once the cluster membership ¢; = & for individual 7 is known, and given ©y.
D; represents the heterogeneous data associated with individual ¢ and can be quite
general in form, e.g., sequences, images, histograms, text, vectors, or combinations of
any of these, as long as we can define an appropriate density function p on such data.

As a simple (but concrete) example consider the case where for each individual we have
a set of discrete-valued sequences, i.e., D; = {sy,sg,..., sy, }, where each sequence s can be
of a different length. For example, each sequence could represent the observed record of
page requests for individual 7 at a particular Web site, and the different sequences represent
different sessions for that individual. We can use the framework above to model the overall
data-generating process as follows:

The population of Web users is divided into K groups or clusters, and a randomly
chosen user i has probability p(c; = k) of belonging to cluster &, Y, p(c; = k) = 1.

The behavior of each cluster is governed by a finite-state Markov model (a stochastic
finite-state machine) with parameters ®; (the initial state probabilities and transition
matrix for that cluster). This Markov model provides a probabilistic generative model
for sequences from that group. If the model has an absorbing state (an “end” state)
then sequences drawn from this model may have different lengths, with a length
distribution depending on ®;. The probability of a particular sequence s under the
Markov model for cluster k is py(s|®y).

There is a generative mechanism for session initiation, e.g., a distribution on the
number n; of sessions for individual %, for each group; e.g., a Geometric model with
parameter Az, and distribution g (n;|Ag).

We could also couple the dynamic characteristics of the individual (as observed via
the sequences s) to other factors (covariates) such as demographic variables like age,
income, etc. (We do not explore this explicitly in this paper, but see Smyth (1999)
for how this type of coupling of static and dynamic behavior can be modeled and
learned).

Thus, in our model so far, the overall parameters for each cluster consist of @ =

(Pr, Ak).



e The probability of a set of sequences from individual 7, D; = {s1, ..., sy, }, conditioned
on assuming that 7 is a member of cluster &, can then be written as

p(D2|C'L:ka®k) = p(niasl7"'7sni|k7®k) (1)
= qe(ni; M) [ pe(silOk) 1<k <K (2)
7=1

where we assume for simplicity that the sequences are conditionally independent given
the model.

e The probability of a set of sequences D; for individual 7, whose cluster membership is
unknown, can be written as:
K
p(D;|©) = Zp(Dﬂci =k,Op)plc;=k), 1<k<K (3)
k=1
i.e., as a mizture of data-generating processes, where the probability model for each
component is specified by Equation 2.

e Iinally, we can compute the probability that individual 7 belongs to cluster k£ by Bayes
rule, i.e.,

p(c; = k|D;, ©) o p(D;le; = k, Op)p(c; = k). (4)

The model above allows us to model heterogeneous data across different individuals in
a fairly general framework. Using the model, our goal will be to estimate the Oy (cluster
parameters) and cluster weights p(c) given only observed data D = {Dy,..., Dy}.

As we will see later in the paper, this probabilistic framework has some distinct advan-
tages over alternative methods for clustering individuals. For example, clustering sequences
of different lengths is not problematic. The key idea is that objects are defined to be sim-
ilar in terms of common similarity to a model, expressed through the likelihood function
p(D;]©k). Two objects are considered similar if they both have higher likelihood under
one particular model than under any other model. For example, consider two clusters, each
modeled by a Markov model, one favoring short runs of @’s and b’s, the other favoring longer
runs. In this context, a short sequence abaabab and a longer sequence baababbabbabaabaab
could both be considered similar relative to the short-run model, i.e., given these two models
there is a much higher probability that they both originated from the short-run model than
the long-run one.

We will show that we can learn the cluster model parameters © from a data set D =
{D7, ..., Dy} describing N individuals, using an algorithm based on the EM procedure. We
will further show that this algorithm generalizes the standard “vector-based” EM algorithm
for mixture models in two directions that are entirely intuitive: (1) membership probabilities
are associated with individuals rather than individual measurements, and (2) individuals
with more (or less) data have more (or less) influence on the parameter estimation process.

4 A General EM-based Clustering Algorithm for Clustering
Individuals

4.1 Statement of a General Algorithm

In this section we provide a general description of an EM algorithm that can be applied
to mixture-model clustering of individuals. The model that we consider here is actually a



special case of a Bayesian hierarchical framework for this class of clustering problems, but
due to space limitations we do not pursue this Bayesian viewpoint further in this paper (see
Cadez and Smyth, 1999, for more details).

We use notation similar to that introduced in the previous section. Specifically, let there
be N individuals and let there be a data set D; associated with each individual (note that
we sometimes refer to the data set D; itself as an individual). Each data set D; consists of
n; observations d;;,1 < j < n;, where each “observation” represents another smaller data
subset. The data set for all individuals is denoted D = {Dy, Dy, ..., Dy}, with individual
data D; = {d;1,d;z,...,din; }. According to the generative cluster model each individual
is assigned to a single cluster ¢; (1 < ¢; < K) and has an associated probability density
function of:

p(Dilei, ©) = p(D;|O,),

where © represents parameters for all the clusters: © = {©1,0,,...,0x} and where ¢;,
1 < ¢; < K is the cluster identity of the 7th individual.

We further assume that the observations are conditionally independent given the model
parameters, so that we can write the probability of the individual (or an individual’s data),

given that the individual belongs to the cluster ¢;, as:
p(Dilci, © H P(dij|Oc;).- (5)

This is equivalent to assuming in a Web-browsing scenario (for example) that an individ-
ual’s Web navigation patterns in any one session are independent of their patterns from
previous sessions, given the overall parameters governing that individual. While this is an
approximation to what is really going on (there may in fact be some sequential session-to-
session effects) we conjecture that it will be a reasonably accurate and useful assumption
in practice.

We are interested in learning the maximum-likelihood (ML) or maximum a posteri-
ori (MAP) parameter estimates given the data D, i.e., Oy, = argmaxe{p(D|0)}, and
O\ AP = arg maxe{p(D|O)p(0O)}, where under the usual assumption that data from dif-
ferent individuals are conditionally independent given the underlying model we have

p(D]©) = Hp (Dil©) (6)

known as the likelihood.

The EM algorithm is a general technique for finding ML, or MAP parameters ® when
some aspect of the data is considered “missing.” In a mixture context, the missing data
consists of the cluster labels ¢; for each individual: if we knew these labels then parameter
estimation would be quite straightforward. The EM algorithm can be viewed as operating
in two steps. In the E step one calculates class-conditional probabilities p(¢;|D;, ©) for each
individual under each of the K cluster models using the current value of the parameters
0. In the M step one updates parameters © by weighting each individual according to
their class-conditional probability. This yields a very intuitive algorithm that is guaranteed
to lead to a sequence of ©’s which have non-decreasing likelihood or posterior probability,
i.e., under fairly broad conditions it will find at least a local maximum of the ML or MAP
objective function.



In the next section we illustrate how this algorithm can be applied to the case when
we have different amounts of data for different individuals, a generalization of the standard
EM framework.

4.2 A Specific Illustration of this EM-Algorithm Framework

As a specific example of this general framework, we revisit in more detail the problem
discussed in Section 3 of clustering discrete-valued sequences, taking values from 1 to M.
We will assume that we are using a mixture of Markov chains model. Each individual ¢
can have n; sequences (e.g., different observed sessions of Web navigation behavior). The
generative model has the general mixture form described in Section 4, where the component
model for each observation in each cluster, p(d;;|©) in Equation 5, takes the form of a
Markov model p(s|0;). We could of course use any sequential model that defines a density
on possible sequences, but choose the Markov model for simplicity of illustration.

The model parameters for each Markov cluster Oy, consist of an initial state probability
vector m(s) and an M x M transition matrix T%(sz|s1), where s, s, s, denote discrete
states, 1 < s,s1,80 < M. In addition, there is a set of weights oy that defines the mixing
proportions of the component models (previously denoted as p(k)). The intuition is that
different clusters will have different Markov behavior and we wish to learn these different
behaviors from observed sequences.

We follow the general approach outlined in Section 3 to define a likelihood and in Section
4 to derive an associated EM algorithm. An important point is that this procedure is quite
general—one simply encodes one’s assumptions about the generative nature of the model
via the likelihood, and the associated EM algorithm follows directly.

Let D; = {si1,...,8i;,...,8in,} be the data for the ith individual, where s; ; is the jth
sequence observed for this individual (from before, s;; corresponds to d;;, the jth subset
of data (or observation) for an individual 7). From the definition of a Markov chain we can
define the likelihood of any particular sequence s; ;, conditioned on a particular cluster ¢;
with parameters O, as

p(sijlei =k,0.) = m(sij1) Tr(sijis1lsijg) 1<k<K (7)

N
Il
—

where s; ;; denotes the /th element of the jth sequence for individual ¢, and L; ; is the length
of the jth sequence for individual 1.

Thus, the probability of all of the data D; from individual 7, conditioned on cluster ¢;,
can be written as:

p(Dile; = k,0.,) = [] p(sijlei, O,) (8)
j=1

in accordance with Equation 5. Here we do not explicitly model the distribution on n;, i.e.,
a distribution modeling how many sequences are produced by members of cluster ¢;. In
effect this is equivalent to assuming a uniform (flat) prior on n;.

Since we do not know a priori which cluster individual ¢ came from, their marginal
probability given the model parameters can then be written in mixture model form as:

K
P(Di|®) = > p(Dile; = k, 0, ) oy (9)
k=1



and where the full likelihood p(D|®) can be written as a product of these terms over i as
in Equation 6.
Equations 7, 8, 9, and 6 completely specify our generative model for the observed data
D. 1In this manner, a full likelihood for all of the observed data can be constructed in
a straightforward systematic manner by building up first from a model of an individual
sequence (Equation 7), to a model of how a set of sequences are generated for an individual
(Equations 8 and 9), to a model of how data for a set of individuals is generated (Equation
6).
Once the likelihood is defined in this manner, the EM procedure is relatively straight-
forward to define. The E-step is a straight-forward evaluation of

p(Dsle; =k, Or)p(c; = k) .
1<k<K 10
Youe1x P(Dile; = u,©,)p(c; = u) - = (10)

via the likelihood terms defined above. The M-step becomes:

plei = k|D;, ©) =

1N
O{iew e —Zp(CZ — k|D“®)
=1
YN Y0 plei = kIDj, ©)4(s, sij1)
SN p(ci = k| D;, ©)
Ef\; p(e; = k|D;, ©)ri1 =%
YN, plei = k| Di, ©)

This equation states that the new mixing proportions are proportional to the membership
probabilities, while the new initial state probabilities and transition probabilities are ob-
tained by counting initial states and transitions and weighing them by the membership
probabilities. The term r'~>*
in all the sequences associated with individual 7.

The computational complexity of this algorithm at a high-level is the same as the stan-
dard multivariate EM algorithm for mixtures, i.e., linear in the total number N of individ-
uals, in the total number of observations ;. d;;, and in the number of iterations of the EM
algorithm. Within each iteration, for each observation, the computation of the M-step and
the E-step will be model-dependent. For Markov mixtures, for example, the complexity is
linear in the sum of the lengths of all sequences (i.e., linear in the total number of discrete
symbols observed), and thus the overall algorithm retains its linearity. For more complex
component models, the complexity can be higher.

T (s2ls1) (11)

represents the count of transitions from state s; to state s

4.3 Differences between this Framework and “Standard EM”

Recall that the standard approach to mixture modeling involves a single observation vector
per individual 2. Thus, we cluster vectors rather than individuals. The framework outlined
in this paper differs in two important aspects from this standard EM approach:

1. In the E-step of Equation 10 the membership weights are associated with individuals
¢ rather than with data observations d;;. This is quite intuitive: we can view this as
having the memberships of each data observation d;; being tied to a single probability
membership distribution for individual z.



2. In the M-step, if one individual has more observations than another (e.g., either more
sequences and/or longer sequences), then that individual’s data D; will get more
weight in parameter estimation through the r; terms in Equation 11. Although it
is intuitive that this should be the case, it is worth pointing out that the proba-
bilistic framework takes care of this issue of different amounts of data for different
individuals (via the likelihood model) in an automatic and consistent fashion. In a
non-probabilistic framework there is no obviously consistent framework for handling
this issue.

5 Experimental Results

5.1 Clustering Individuals based on Web Browsing Behavior

Table 1 shows a small fraction of actual Web session data obtained from a large commercial
software company. Details of the data are proprietary but can be characterized in the
following manner. Page-requests from a Web-browser are recorded on individual’s client
machines and downloaded nightly to a central archive. Sessions are defined (somewhat
arbitrarily) as any set of page requests where the gap between successive requests does not
exceed 30 minutes. Page requests are automatically categorized into 10 different categories,
based on the nature of the Website from which the page is requested.

We investigated the use of Markov mixtures for this problem. Thus, for this particular
data set, we have the following instantiation of our general approach:

e Type of Data: Discrete-valued sequences, variable length, multiple sequences for
some individuals

e Model: mixture of Markov components
e Parameters: weight, initial state distribution, and transition matrix per cluster.

The data set contains 7,845 individuals with a total of 13,082 sessions (sequences). Each
sequence consists of page requests categorized into 10 categories (states). In the results
presented here we clustered the data into k = 20 clusters.

Figure 5.1 shows three transition matrices summarizing three interesting clusters. Each
square in the figure represents a joint probability of the transition s;— > s;. Note that
this information not only takes into account how likely it is that a user will go from state
s; to state s;, but also how often the user is in state s;. The first cluster contains users
that mostly stay within a single category (high self transition probability). The second
cluster shows users that tend to navigate among three different categories but stay slightly
longer in the first two. The third cluster shows users that mostly stay in a single state, but
occasionally make a short visit to another state.

Viewing transition matrices are one way to visualize resultant clusters. For a larger-scale
study and additional results with a similar type of data see Cadez et al. (2000, submitted).

5.2 Clustering Genes using Gene Expression Data

Gene expression data provides another direct application for our clustering framework. In an
effort to classify and understand the behavior of the human genome, scientists employ tiny
DNA mircoarrays which afford the placement of thousands of distinct genes in a compact



Figure 1: Three joint—transition probability matrices for the Web page-request data. Each
square represents joint probability p(s;,s;), where s; and s; are all combinations of the 10
available states. Lighter squares represent higher probability.

Figure 2: This picture shows the actual gene expression data. Note that only one-fifth of
the data set is displayed.



Figure 3: Kernel regression clusters returned on gene expression data.
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rectangular array. The microarrays allow scientists to test the responses (or expressions) of
a set of various genes under specific stimuli.

A typical gene expression data set contains a set of sequences whose values measure
the level of response for a certain set of genes over time. For example, a data set might
contain 1000 sequences measuring the responses of 1000 different genes over a 24 hour
period. This data set might contain 20 response measurements in each sequence, yielding
20,000 measurements in total.

Scientists find it useful to be able to cluster a set of genes into several groups, in which
each group contains genes evincing similar behavior. Armed with such a clustering, scientists
may be able to more easily probe the functional purpose or role for which these ”super-
groups” are responsible.

The results in this section were obtained from a gene expression data set containing 517
sequences, each consisting of 12 measurements. The measurements were taken over a 24
hour period. The details are as follows.

e Type of Data: real-valued sequences as a function of time, fixed-length
e Model: mixture of kernel-regression components

e Parameters: weight, bandwidth

Eisen et al. (1998) describe this data set in greater detail and provide a clustering using
standard hierarchical (average-linkage) clustering.

Here we show that it is a simple matter to cluster this data using our unified framework.
We chose to model this data with a mixture model containing kernel regression mixture
components. This type of model seems more natural than employing a standard hierarchical
approach (vector-based) since you are explicitly modelling a gene’s expression dependent
on time. See Gaffney and Smyth (1999) for a more detailed discussion of kernel regression
mixture models.

Figure 2 shows a picture of a portion of the data set. The y-axis shows the level of
response and the x-axis simply indexes time. Figure 3 shows 5 of the clusters that were
returned when the data was analyzed. The returned clusters match those found by Eisen
et al. (1998) rather closely.

5.3 Clustering Patients based on Red-Blood Cell Cytograms

Red blood cell cytograms are two-dimensional histograms of red blood cells’ volume and
hemoglobin concentration. They are routinely obtained from flow-cytometric machines
available in some medical labs. Understanding properties of joint distribution of volume
and hemoglobin concentration is an important diagnostic tool in discovering patients with
some types of blood disorders like iron deficient anemia (IDA) (McLaren, C. E. 1996). Even
more important scientific insights can be obtained by examining a population of individuals,
where each individual can be represented by one or more cytograms. For example, this
analysis can reveal variability among individuals, variability of a single individual over
time, or it can be used to classify new patients.

In an earlier study (Cadez et al, 1999) we showed how each cytogram can be character-
ized as an 11-dimensional vector. This way, each individual has one or more 11-dimensional
vector data points associated with him or her. In the experiments presented here we specif-
ically look at 2 cytograms per individual, the so called “duplicates”. Duplicates exist since

11
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Figure 4: Red-blood cell patient data (a) labeled into control and iron deficient classes with
two measurements per patient, (b) results of running our clustering framework on the data
in (a) with the class labels removed.

each blood sample is typically analyzed twice with a 15 minute interval in between. The red
blood cell data set consists of 90 controls (healthy individuals) and 82 patients with IDA.
Figure 4 shows the 2 most important dimensions (out of 11 available) that can be viewed
as an approximation to cytogram mean. Each dot represents a single duplicate, so there
are twice as many dots as there are individuals. The left figure shows true classification,
while the right figure shows results of our clustering (using 11-dimensional vector data and
with class labels removed). The right figure also shows different duplicates with different
symbols revealing variability of individual data.
To summarize, this data set and model can be described as:

e Type of Data: Vector data, variable number of data points per individual
e Model: mixture of Gaussian components

e Parameters: weight, mean, and covariance matrix per cluster.

6 Conclusion

We presented a unifying probabilistic framework for clustering individuals or systems into
groups when the available data measurements are not multivariate vectors of fixed dimen-
sionality. a. We derived a general EM algorithm for clustering this type of data and
demonstrated its usefulness within several applied examples. A key idea in this paper is the
fact that one is able to plug in an appropriate model for a data set and apply it within our
general framework to generate parameter estimates and cluster models in a straightforward
and consistent manner. This allows the data analyst to take full advantage of all of the
available data on an individual without having to develop specialized algorithms for each
different type of data present.
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