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Abstract

This paper addresses the problem of clustering data when the available data measure-
ments are not multivariate vectors of fixed dimensionality. For example, one might have
data from a set of medical patients, where for each patient there are time series, image,
text, and multivariate data. We propose a general probabilistic clustering framework for
clustering heterogeneous data types of this form. We focus on two-level probabilistic hierar-
chical models, consisting of a high-level mixture model on parameters and a low-level model
for observations. This general framework permits probabilistic clustering of “objects” (se-
quences, histograms, images, etc) using an extension of the expectation-maximization (EM)
algorithm which we derive. We further show that earlier (intuitive) clustering algorithms
can be viewed as special cases (approximations) of the framework proposed here. The pa-
per includes several illustrations of the method, including an application to a problem in
clustering two-dimensional histograms of red blood cell data in a medical diagnosis context.
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Figure 1: Binary activity data from 24 locusts as a function of time (white indicates inactive,
black indicates active. The odd numbered (fed) locusts are less active (white) than the even
numbered (unfed) locusts.

1 Introduction

Clustering is a fundamental and widely applied methodology in understanding large data
sets. Clustering algorithms are typically applied to vector measurements of fixed dimension.
For example, we may have a d measurements on a set of patients and we represent the
measurements on individual ¢ as a d-dimensional vector. For such data there are a wealth
of different clustering methods available.

Increasingly, however, data may not be in a convenient fixed-dimensional form. For
example, in a medical context, one might have data such as biomedical time series, genetic
sequences, diagnostic images, text annotations describing a diagnosis, as well as “standard”
vector measurements describing age, weight, test results, and so forth. Complicating matters
is the fact that one could have different lengths of sequences and time series or different
sized images for different individuals, as well as different numbers of sequences or images
per individual.

Such heterogeneous data sets are increasingly common, not only in medicine, but in
many other fields. For example, in transaction data (such as Web logs, retail purchases, etc)
one can have temporal, spatial, and multivariate aspects to an individual’s measurements.
Scientific studies also generate multiple data types. For example, in cognitive science and
animal behavioral studies it is common to have behavioral (dynamic, sequential) data for
each individual. Figure 1 shows a simple example of such data, where binary observation
sequences were collected on 24 locusts. Here one would like to be able to cluster the locusts
based on the observed behavioral sequences.

The fundamental problem in clustering such data lies in defining a suitable distance
between any pair of individuals. For multivariate data we can work from geometric notions
of distance in a Euclidean space (e.g., the k-means algorithm). For data composed of



sequences, images, and so forth, there need not be any obviously equivalent geometric
analogies.

Traditionally, two general techniques have been used to address this problem. The
first approach reduces all of the heterogeneous data to a fixed-length vector representation.
For example, the vector-space representation is widely used in information retrieval for
representing text documents of different lengths and formats, and histograms are often
used to summarize Web access sequences or the color content of pixel images. In practice,
this technique is often very useful and has the significant advantage of being relatively
simple. It allows one to take full advantage of the many vector-space clustering algorithms.
However, it is also clear that this general approach incurs some information loss (e.g., the
loss of dynamic information when summarizing sequential data with marginal statistics),
which in some applications may be critical. From a knowledge discovery perspective the
vector representation may be adequate for clustering but can nonetheless be a relatively
weak representation of the semantic content of the data.

A second general approach to clustering object data is to directly define a pairwise dis-
tance function between objects, typically based on some notion of how easy it is to “trans-
form” one object into the other. A well-known example here is the edit distance between
sequences. For example, in computational biology relatively sophisticated edit distances for
pairs of protein sequences have been developed based on first principles knowledge of how
such sequences evolve genetically. Given N objects, we generate a matrix of N? pairwise
distances (so-called proximity data). Once again there are a large number of algorithms
for clustering based on proximity data (e.g., hierarchical clustering). However, for large
data sets the O(N?) cost of constructing the proximity matrix is prohibitive, although it
always possible to work with a sampled version of this matrix. In addition, proximity data
clustering is not always ideal from a practical viewpoint. For example, there is no natural
probabilistic setting for proximity data clustering, and thus, no natural setting for answering
questions such as “how many clusters?” in a statistical context.

In this paper we investigate the general question of how one can cluster individuals
based on heterogeneous data and investigate a general probabilistic hierarchical clustering
framework for this problem.

2 Probabilistic Model-Based Clustering

2.1 Model-Based Clustering of Multivariate Data

Before considering modeling of heterogeneous data, it is useful to first review the basic
concepts of probabilistic clustering for “standard” vector (multivariate) data. A generative
probabilistic model is a probabilistic model for how an observed data point x is generated.
For example, the model could be a multivariate Gaussian f(x|#), where # are the parameters
of the Gaussian model. It is important to keep in mind that this technique is model-based,
i.e., we are hypothesizing a data-generating mechanism (in the form of the density function
f) for the observed data.

Probabilistic model-based clustering (e.g., see McLachlan and Basford (1988), Stutz and
Cheeseman (1996), Smyth (1996), and Fraley and Raftery (1998)) builds on this idea by
hypothesizing that the data are being generated by K different models. These K models
correspond to the K clusters of interest. A particularly useful model of this form is the



finite mizture model, which has the general form:

K
Fx) = felx|0k)ak (1)
k=1

where the fi’s are the density functions (locations and shapes in d-dimensional space) for
each cluster, and the oy are the relative weights (or probability) of each cluster, 3~ aj = 1.
The parameters can be estimated from the observed data using the expectation maximiza-
tion (EM) algorithm which we discuss in detail later.

This form of clustering can have distinct advantages over competing non-probabilistic
approaches (such as the K-means algorithm) for certain problems, since it allows uncertainty
in cluster membership, direct control over the variability allowed within each cluster (as
captured by the variance characteristics of each component model fx), and permits an
objective treatment of the ever-thorny question of how many clusters are being suggested
by the data (for example, see Smyth et al (1997) and Smyth, Ide, and Ghil (in press) for a
specific application in atmospheric science).

2.2 A Generative Hierarchical Cluster Model

We propose the following hierarchical framework for probabilistic clustering:

e Anindividual is randomly drawn from the overall population (universe) and is indexed
with letter ¢ (the index represents the “individual count”).

e The individual is assigned to one of K clusters with probability ag, > ar =1, 1 <
E<K.

e Parameters ©; are drawn from a “prior” model in parameter space given member-
ship in cluster k, namely 7 (0;|¢r), where ¢y are the prior parameters for © in the
kth cluster. This prior represents the within-cluster variability in parameter space
of individuals belonging to cluster k. Between-cluster differences are obtained from
having different prior components with different prior parameters ¢, for each of the
K clusters. We will refer to this model on parameters ©; as the high level model. If we
do not know which cluster an individual’s ©;’s come from then the high level model
is a mixture

K
T(0) =D apmi(O]¢r).

k=1

e Given O, data D; are now generated by a data generating probability model f(D;|0;).
We refer to this as the low level model. D; represents the heterogeneous data associated
with individual . Note that this data can be quite general in form, e.g., sequences,
images, histograms, text, vectors, or combinations of any of these, as long as we can
define a density function f on such data.

This type of hierarchical model is quite plausible as a generative mechanism for a wide
variety of clustering situations. For example, an individual (call them ) might be predis-
posed to contract a disease for hereditary reasons with probability a;. The disease might
manifest itself via unusual EEG patterns. The EEG time series could be governed by some
parameters O;, i.e., there is a density function f(D;|©;) on observed time series values D;
for this individual. In turn, there is a distribution of ©’s for the population of individuals
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Figure 2: An illustration of the hierarchical cluster model.

as a whole for this disease, and the typicality and variation in the ©’s (and indirectly in the
observed time series) is reflected in the prior 74 (©)|¢y) for this component.

The hierarchical model allows us to model heterogeneous data across different individ-
uals in a fairly general framework. Using the model, our goal will be to estimate the ¢
(cluster characteristics) and ©; (individual parameters), given only observed data D;. Fig-
ure 2 illustrates the structure of the overall hierarchical model, and can be interpreted as
a directed graphical model (belief network). Low-level individual parameters and data are
assumed conditionally independent given the high-level model.

As we will see in this paper, the probabilistic hierarchical framework has some distinct
advantages over alternative methods for object clustering. For example, clustering sequences
of different lengths is not problematic. The key idea is that objects are defined to be
similar in terms of common similarity to a model, expressed through the likelihood function
f(D;|0). Two objects are considered similar if they both have higher likelihood under one
particular model than under any other model. For example, a short sequence abaabab and a
longer sequence baababbabbabaabaab could both be considered similar in the context of two
alternative Markov models, one of which favors very short runs of a or b (the more likely
model for these two sequences), and one of which favors much longer runs.

This general type of model is commonly used in statistics, and is variously referred to
as a hierarchical model or a multilevel model (e.g., Gelman et al, 1994). Thus, the model
itself is not new. What is new in this paper is the use of this type of model for clustering,
where we specifically make the high-level model have a finite mixture form. Note this is not
a conventional prior in the sense that the parameters of this prior ® are learned from the
data (this is quite similar to a technique known as “empirical Bayes”). We are not aware of
any related published work in probabilistic model-based clustering which uses this general
framework, i.e., a hierarchical model with a mixture model prior which is specifically being
used for clustering. For example, Sjolander et al (1996) used mixtures of Dirichlet priors
for modeling protein sequences but with a focus on prediction rather than clustering. Their
framework can be viewed as a special case of the framework we set out below.

2.3 Notation

The observed data is D = {Dy, Dy,...,D,}, where each D; is a set of observations for
individual 7. For example, each D; could be a set of time series or sequence values, a set



of pixels, a set of histogram counts, and so forth. The only requirement is that we can
define a probabilistic model (the low-level model) for the observed data as f(D;|0;). The
set of all low level model parameters is © = {©,0,,...,0,}. The low level parameters ©
are modeled by the high level mixture model 7(0) = YK | a7 (0|¢r), where the model
is parameterized by ® = {ag, ¢r}, 1 < k < K. Note that the mixture is a consequence of
missing (hidden) data about which group an individual belongs to.

We use D to represent all of the observed data, Z to represent all of the missing data,
O to represent the low level model parameters, and ® to represent the high level model
parameters. The missing data 7 typically consists of missing class labels k; (from the
generative model), but can include any additional missing data that might appear in the
specific low level model f(D|©) (e.g., when this model is also a mixture). Accordingly, we
split the missing data Z into two subsets Z = {73, Z.} where Z; represents the missing
data in the high level model, while Z, represents the missing data in the low level model.

3 EM for Standard and Hierarchical Models

3.1 Standard EM

The EM algorithm is a convenient way of maximizing the log-likelihood associated with
mixture models. Assume that there is some observed data X, some missing data Z and that
the joint distribution of X and 7 is p(X, Z|6), where 8 is the set of all the parameters. The
marginal distribution of X is p(X|6) = [ p(X, Z|6)dZ. Define the log-likelihood associated
with each of these two distributions as

Ix.2(6) = logp(X,Z6)
x(6) = logp(X|6) = log [ p(X, Z|6)dZ

The goal is to maximize the log-likelihood of the observed data, [x (#). If we decompose the
joint as

p(X, Z]6) = p(X|0)p(Z] X, 8),

take the log of the both sides of the equation and rearrange the terms, we get:
Ix(0) = Ix,z(0) — log p(Z] X, 6).

This equation can be averaged over any choice of PDF f(Z), but if we make the particular
choice of f(Z) = p(Z|X,0'), we get:

x(6) = (xzO)yzxa ~ | PZIX,0) logp(Z]X, 0
= Q(O,H’)—h(@,@’)

The left hand side of the equation is unchanged by the averaging since it does not depend
on 7 (it also represents the likelihood that we want to maximize). The first term on
the right hand side represents the expected value of the full likelihood Q(6,6') (calculating
@ represents the so called “E” step), while the second term represents the negative cross-
entropy h(6,8’) and has the desirable property that it is maximized by § = #’. The property
of the cross entropy term gives rise to the EM algorithm where one maximizes (6, 8') with
respect to 6 (the so called “M” step) by using the current value of parameters for #'. By



iteratively applying E and M steps the likelihood on the [hs of the equation is guaranteed
not to decrease and will reach the local maximum under some very weak assumptions. Note
that Q(#,6’) need not be maximized at each iteration; it suffices to find 6’ that will increase
Q(8,8"). Algorithms that exploit this fact are known as generalized EM algorithms (GEM)
(e.g., McLachlan and Krishnan, 1997).

3.2 EM for Hierarchical Cluster Models

In the hierarchical model, we have data D, hidden data Z (consisting of Z; — class labels
k; for each individual ¢, and Z, — additional low level hidden data), a set of parameters O,
and a set of high level parameters ®.

We treat both ® and ©; as parameters and seek the maximum a posteriori (MAP)
estimate in the following manner:

p(D]©,®)p(0,®) = p(D,O[P)p(P).

We will assume that the hyperprior p(®) is uninformative so we omit it from further analysis
and write the optimization problem as:

{6,9} = argmaxp(D, 6]). (2)

Alternatively one could follow a fully Bayesian approach by including the hyperprior and by
integrating over unknown parameters rather than obtaining point estimates; in this paper
we will restrict our attention to a MAP analysis.

3.3 Optimization for hierarchical models

As the first step we need to show that the EM algorithm can be applied to solving equation
(2). Note that one of the variables we are optimizing with respect to (i.e. ©) appears as a
variable in the joint and not as a conditioning variable. If we decompose the joint as:

p(D,0,Z|®) = p(Z|D, 0, ®)p(D, 6[®),
the derivation of EM is similar to the standard derivation:
Ipe(®) = Ipez(®) —logp(Z|D,6,9)
Ipe(®) = (Do z(®),zpe00e) /p(Z|D7®’, @) logp(Z|D, 0O, ®)dZ.
= Q(0,9;0', ') - h(O,d;0, &) (3)
From Equation (3) it is obvious that the last term still represents the cross-entropy, hence
the EM algorithm is still valid. The equation also establishes the specific form of the @
function.
We now calculate all the relevant probabilities that appear in the Q(0, ®;©’, ®’). The

joint distribution of observed and hidden data can be inferred directly from the generative
model:

p(D:i, 05, Zildr,) = f(Di, Zp|O;) ok, (Oi|¢x,)

n

1 7(D:, Z11©:) ak, 7k, (O] b, ), (4)

=1

p(D, 0, Z|®)



under an iid assumption (not necessary in general). Here we explicitly include the depen-
dence on any missing data Z,. in the low level model. The missing data Z, naturally divides
into subsets for each individual: Z. = {Z!, Z2 ..., Z"}. The corresponding log-likelihood
is:

n

Ip,e7(®) = log[agm, (O:l¢x,) f(Di,1:|0:)]. (5)

i=1
Note that class labels k; for each individual represent the missing data Zj in the high level
model. We also explicitly write ¢, to show that each mixture component has its own set
of parameters (i.e., the mixture parameters for different components are independent). The
conditional probability of missing data given the observed data is

p(Z|D,0,®) = p(D,0,7,)/p(D,0,d) (6)
17 YRk (O] 0k, f(Di, 7i]©;)
N 1;[ = m(0; |q>§ f(D;|©;) ’ ™)

where we used the index r; to enumerate the missing data 7, for the i¢th individual in the
low level model. Note that in the special case when there is no hidden data at the low level,
we have that f(D;,r;|0;) = f(D;|0;), and the low level model cancels out of the equation
to yield:

© o, Tk (O] o)
p(Z]1D,0,®) = [ =5
e B CHLY)

This form is particularly useful if the low level model is a simple model (e.g., a single
Gaussian or a single Markov chain). In general one can derive that the @ function is

Q(0,9;0,0") = <lD®Z(‘1’)> p(Z]D,0",3")

B E (O F(Di 10 N
- ;;; ®/|(I)’) (Dzl(%) log[akﬂk((a |¢k) (Dzyrzl(az)]

= i Z Y wi, log [axm(©:|¢x) f(Di, 7103)], 8)

=1 k=1 ri

and the weights w} _ are naturally defined as:

 alm(©6L) 1(Di, 1))
Vi = @) (D6 ©)

This equation is the natural generalization of the usual “membership” probabilities in non-
hierarchical mixture models, with weights now defined over high-level missing data (the k’s)
as well as low-level missing data (the r’s).

For further simplification of notation, the weights as defined by the previous equation
can be interpreted as,

i i o “k(@gW)
K
i i f(Di77‘|@;')
w = wh, =0 11
2. e = T en (1)



where lowercase w and uppercase W represent weights for low and high level models re-
spectively had we treated each level independently. In addition, the summation over both
of the lower indices of w} . yields:

K )
SN wp, =1 (12)
k=1 ri

for any individual 1.

Equation (8) represents the “E” step of the EM algorithm (i.e., it is the expected value
of the full, unobserved likelihood with respect to the conditional distribution of missing
data). All the weights as defined by Equations (9), (10) and (11) depend on the “primed”
parameters and are not subject to maximization in the M step.

Assume for the moment that the ©’s are fixed at some particular values and we wish
to estimate ®. We first maximize ) with respect to a (note that there is a constraint

Ykpor=1):

K
% (Q(@,@;@’,@’)—/\Zak) = Zzwlr =0,

k=1 i=1 7

where upon summing over all [ and using property (12) and the definition (10) we readily
get:

n
Zth_ ZW;, A<I<K (13)
=1 ¢ i:l

This is an intuitive result: the weight of each mixture component is determined by the
average weight over individuals. Next we maximize ) with respect to the rest of the high
level parameters ®:

9 0,00/, 0) =

90, (szr) 9 log 71(©; 1)

>

n
Z log 7rl(® |¢l) (14)
which is just a weighted ML estimate of the parameter ¢; treating the (fixed) ©; as data.
Note that this is what one would calculate in the standard EM algorithm if there were no
low level model at all.

The previous equations show that the M step at the high level is unchanged by the
presence of the low level model, if the low level parameters are treated as fixed. However,
the low level model will generally change the parameters ©; that the high level model treats
as input data. Hence, at each iteration, the parameters ©; must first be updated as required
by the low level model, and only then can the upper procedure be applied to update .
To update the parameters ©; we write the corresponding M-step equations, but the exact
details will depend on the specific low level model being used. Again, we need to find the
derivative of ) with respect to each of the parameters ©;:

0 0
) (67(1);@/7 (I)/) Ezwkr logﬂ—k(@ |¢k) (DMTZl@ )
00; 00, ol
8 K 8 K )
= J0. > (Z wkr) log 7 (8ildx) + 55 > (E w}cr) log f(Di, ri|©;)
b k=1 tori \k=1



0 & B

= 8—(9”;1% log 71 (©;| o) + 90, ;wr log f(D;, i|©;)

= 0. (15)

The solution to this equation represents the standard MAP estimate of ©;. The prior is
defined by the first term in the equation. It consists of a weighted sum of high level mixture
components. The second term in the equation is the standard weighted ML term that would
appear in an ML estimation at the low level if there were no hierarchical model (i.e., no
prior at the high level).

3.4 The 2-level GEM for Hierarchical Models

The results in the previous sections demonstrated that there is a well defined MAP esti-
mation problem for hierarchical models which can be solved by an EM algorithm. The
algorithm is a generalized EM (GEM) algorithm as the () function is not maximized at each
step. Instead, it is partially maximized twice. Here we summarize the steps:

e Define the hierarchical model by specifying the low level model and the high level
model.

o Initialize the algorithm:

1. Find ML estimates éiML of parameters ©; for each individual;

2. Use parameters ©;pr7, as the data (input) for the high level model and find ML
estimates ®ps7, of the hyperparameters ®.

Each of the two initialization steps can be done independently by using (for example)
the standard (decoupled) EM algorithm.

o Iterate through the following steps until convergence, or until the maximum number
of iterations has been reached.

1. Calculate weights w?, for each individual using the current parameters and equa-
tion (9).
2. Use the MAP equation (15) to update the parameters ©; for each individual.

3. Use the ML equations (13) and (14) to update the hyper-weights and the rest of
the hyperparameters.

The computational complexity will typically be dominated by step 2 above, which takes
O(|D|R) steps per iteration, where |D| is the total number of data points observed across
all individuals, and R is the number of hidden variables (e.g., mixture components) in the
low-level model. The number of GEM iterations before convergence will depend on each
data set, but is not unusual for the algorithm to converge within 20 to 50 iterations.

4 Experimental Results and Special Cases of the General
Method

In this section we derive some approximations to the full framework and show how the
hierarchical models can be used in practice. The most general approach as described by



equations (8), (13), (14) and (15) is not necessarily the most useful approach in practice.
We look at two specific cases: (a) when there is relatively little variation in parameters
within a cluster, and (b) when there is a relatively large amount of data observed for each
individual.

4.1 Constraining Parameter Variability and Applications to Sequence
Clustering

One specific case of the general hierarchical framework results from assuming that there is no
parameter variability across individuals within a cluster, or equivalently, that individuals in
each group are characterized by the same set of parameters. In the framework of hierarchical
models this corresponds to specifying:

K
= (0 — ¢y),

k=1

where § represents the Dirac delta function. This specifies that each individual has the
probability aj of membership in cluster &, but once the cluster membership of an individual
is known then parameters are also known to be exactly ¢ (i.e., there is no variability within
the cluster). With this particular high level model Equation (7) becomes:

21D.0,8) = T %00 =) f(Dil6)
i ) ZI_IIZJ 12;0(0; — ¢;) f(Di]©;)
o o f(Diléy,)
- H K a;f(Dilé;)

(16)
while Equation (8) becomes:

i = onf(Dilér)
ko K
Z]‘:1 Oéjf(Dz’|¢j)

n

K
Q(0,2;0,9) = 33 wjlog[ard(©; — éx) f(Ds]0)]

i=1 k=1
n K
= ZZ wt log [ag f(Ds|dr)] (17)

It is interesting to note that this “delta function prior” has implicitly been used in the
literature in the past. Krogh et al (1994), and Smyth (1997) used this approach for clustering
sequences in an EM framework, using hidden Markov models. Similarly, Smyth (1999)
demonstrated the use of EM for clustering individuals based on vector measurements and
sequence measurements together and Gaffney and Smyth (1999) uses mixtures of regression
models for clustering trajectories and curves. None of these papers cast the problem in
a general hierarchical model framework. However, all implicitly assume a delta function
prior for the high level model parameters, or equivalently, that there is no within-cluster
variation in parameters. The hierarchical model and EM estimation methodology derived
in this paper is a strict generalization of this earlier work on probabilistic clustering of
non-vector data.

10
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Figure 3: Posterior probabilities of class membership after hierarchical model clustering

We provide a simple example of using a hierarchical model with “delta function priors”
to cluster sequence data. The example is intended to be illustrative rather than a systematic
investigation of the method. MacDonald and Zucchini (1997) describe behavioral data from
24 locusts in a controlled experiment as shown in Figure 1. Even-numbered locusts were
given no food before the experiment and odd-numbered locusts were fed.

We clustered the observed 24 sequences into two groups, assuming no within-cluster
variation of parameters across individuals as outlined above. There are n = 24 individuals
and the observed data D; for individual ¢ is a binary sequence. We assume a simple first-
order Markov model for f(D;|¢r), k& = 1,2, for the sequence-generating model in each
cluster. Thus, we wish to find a mixture of two Markov models (two clusters of sequential
behavior) which account for the data.

The EM equations which result for this specific hierarchical model are quite intuitive and
natural. At each EM iteration the likelihood of each sequence D; is calculated under both
high-level models, posterior membership probabilities obtained, and new Markov parame-
ters ¢y estimated for each model by weighting the sequences according to their posterior
probabilities.

Figure 3 shows the class membership probabilities for cluster 1. This cluster contains
the more active (unfed, even-numbered) locusts, with one exception, locust number 12, who
although unfed is also relatively inactive, and thus, was clustered with the inactive (fed,
odd) locusts. The results demonstrate that the hierarchical model successfully clustered
the data into two sensible clusters on this relatively simple problem.

4.2 A Maximum Likelihood Approximation for Large Data Sets, with an
Application to Clustering Red Blood Cell Histograms

When there is a large data set D; available for each individual, the likelihood function
associated with the low level model (i.e., the likelihood of parameters ©; given the data D)
will be peaked around its maximum value. If the high level model is reasonably smooth (the
prior term in equation (15)), we can approximate Equation (15) by omitting the first term.
However, if we omit the first term in equation (15), it becomes a standard ML equation

11
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Figure 4: Scatter plot of the estimated mean parameters for individuals from the Iron
Deficient and Control groups, with Gaussian “parameter variation models” superposed.

and need not be updated at each iteration. In other words, this approximation decouples
the high level model and the low level model. It suffices to find the ML estimate éiML
once for each individual and use the set © = {élML, (':)QML, .. -,énML} as the data for the
ML estimate of @ at the high level model. This approximation is intuitive: data for each
individual are summarized by low level model parameters (:)iML, and individuals are then
clustered according to the “similarity” of their corresponding parameters, relative to the
mixture model prior.

We illustrate the use of this particular approximation with an application in medical
diagnosis (Cadez et al, 1999). Blood samples from different individuals are routinely an-
alyzed to screen for various blood-related diseases. An individual blood sample contains
around 40,000 individual red blood cells (RBC). Each cell is characterized by its volume
(V) and hemoglobin concentration (HC). Thus, for each individual ¢, D; is a set of 40,000
such 2-dimensional vectors (one per cell) and we expect the large data set approximation
(the decoupled estimation technique described above) to be accurate. It is known (from
biological principles) that the V-HC distribution of a single population of cells should be
lognormal and that mixtures of log-normals provide a good fit of this type of data. Thus,
we use a 2-component bivariate log-normal mixture for the lower level model f(D;|0©;).

The maximum likelihood mixture parameters (:)iML for each of 180 individuals are first
estimated. Then the distribution of these parameters is modeled by a mixture prior. Figure
4 shows the fitted mixture model in parameter space for data which is known to come
from two classes (normal, or Controls, and iron deficient anemia). The axes in this plot
correspond to the estimated bivariate means for each individual, for the larger of the 2
log-normal components in the mixture f(D;|©;). The two symbols in the plot correspond
to which of the two classes (Control or iron deficient) each patient was diagnosed using a
separate accurate laboratory test for iron deficiency. It is important to note that we only
use these “ground truth” class labels to illustrate the accuracy of the clustering: the class
labels were completely hidden from the hierarchical clustering algorithm. The two ellipses
correspond to the covariance matrices of each component 7;(©|¢x) in the estimated prior,
where here we used Gaussian component priors on the means.
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This plot is quite informative for a number of reasons. It is clear that the hierarchi-
cal model framework matches the observed data quite well here, i.e., there is considerable
variability in parameter space, corresponding to the idea of allowing parameters to across
individuals. Yet this variability is systematic in the sense that the parameter distribu-
tions appear to fall into two Gaussian “clouds.” Furthermore, these two Gaussian clouds
correspond almost exactly to the known prior diagnostic classification of each individual
(i.e., most individuals fall into the same cluster as other individuals with the same diag-
nosis). Since the data sets are so large at the lower-level here, the decoupled and coupled
hierarchical models yield virtually identical solutions.

4.3 Systematic Experiments

We ran a number of additional systematic experiments using the red blood cell data de-
scribed above, where we subsampled both the number of red blood cells per individual (the
low level data) and the number of patients. For example, we varied the number of patients
in the training data from 10 to 90, and the number of red blood cells per patient from
1,000 to 10,000. In all cases the decoupled approximation and the full hierarchical (cou-
pled) algorithm produced quite similar performance in terms of out-of-sample log-likelihood
and classification accuracy (in terms of assigning patients of the same disease to the same
clusters). Both models consistently produced accurate clusterings of the data (i.e., similar
to that of Figure 4). The results did not provide any significant additional information
beyond that shown in Figure 4 and thus, given space constraints, we do not include them
here. At the time of writing of the paper we are currently investigating other data sets,
applications, and sample size trade-offs, where one might expect the full hierarchical model
to provide systematically better results than the decoupled approximation.

5 Conclusions

We presented a general framework for clustering individuals, where we can have measure-
ments on each individual in the form of “non-vector” data (e.g., sequences). Provided the
observed data for each individual can be modeled probabilistically, then the hierarchical
model provides a relatively realistic model for clustering such data. The key idea is to
model variability across different individual’s parameters using a mixture model prior on
parameters. The component densities in the prior can be directly interpreted as model-
based clusters for the individuals. We derived a GEM algorithm for estimating both the
prior and the individual parameters. The algorithm is quite tractable and involves an in-
tuitive combination of low-level and high-level estimation steps in the hierarchy. We also
derived special cases of the algorithm for problems where there is a large amount of data at
the individual level, or where there it is assumed that there is no variability in parameters
for each cluster; the latter turns out to be equivalent to a number of existing EM-based
probabilistic clustering schemes for clustering sequences and curves. Finally we illustrated
the method on two real data sets and demonstrated the utility of the general approach for
clustering problems of this nature.
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