Probabilistic Models for Query Approximation with Large
Sparse Binary Data Sets

Technical Report No. 00-07
Department of Information and Computer Science
University of California, Irvine

Dmitry Pavlov
Information and Computer Science
University of California, Irvine

CA 92697-3425

pavlovd@ics.uci.edu

Heikki Mannila
Nokia Research Center
P.O. Box 407
FIN-00045 Nokia Group, Finland

Heikki.Mannila®@nokia.com

Padhraic Smyth
Information and Computer Science
University of California, Irvine

CA 92697-3425

smyth@ics.uci.edu

February 2000

Abstract

Large sparse sets of binary transaction data with millions of records and thousands of
attributes occur in various domains: customers purchasing products, users visiting web
pages, and documents containing words are just three typical examples. Real-time query
selectivity estimation (the problem of estimating the number of rows in the data satisfying
a given predicate) is an important task for such databases.

We investigate the application of probabilistic models to this problem. In particular, we
investigate probabilistic models based on frequent sets and maximum entropy, and compare
such models to the independence model and the Chow-Liu tree model. We find that the
maximum entropy model provides substantially more accurate probability estimates than
the other methods but is more expensive from a computational and memory viewpoint. To
alleviate the computational requirements we show how one can apply bucket elimination
and clique tree approaches to take advantage of structure in the models and in the queries.
We provide experimental results on two large real-world transaction datasets.

1 Introduction

Massive datasets containing huge numbers of records have recently become an object of
increasing interest among both the businesses who routinely collect such data and data
miners who try to find regularities in them. One class of such datasets is binary transaction
data. This class is typically characterized by high sparseness, i.e. there might be hundreds
and thousands of binary attributes but a particular record would only have a few of them
set to 1. Examples include retail transaction data sets and Web log data sets, where each
row is a transaction or session and each column represents a product or Web page.

Owners may have a lot of questions about their data. For instance, it may be of interest
to know how often the pages W; and W5 but not W5 were requested together. Such types
of questions about the data can be formalized as Boolean, typically conjunctive, queries
on arbitrary subsets of attributes. The problem then is to find the frequency of rows in
the dataset that satisfy query @, or, equivalently the probability of the query P(Q) with
respect to the empirical probability distribution defined by the data.

Any Boolean query can be answered using a single scan through the dataset. While this
approach has linear complexity and works well for the small datasets, it becomes infeasible
for real time queries on huge datasets which do not reside in main memory. We would thus
like to have an approximate algorithm that would allow us to trade accuracy in the estimate
of P(Q) with the time taken to calculate it.

This paper studies different probabilistic models for approximating P(Q). There exists
a substantial body of work on this problem in the database literature, largely from a non-
probabilistic viewpoint; in this paper we focus exclusively on probabilistic approaches. Our
hypothesis is that the probabilistic modeling approach is a useful general framework for
approximate query answering. A simple model-based approach is to calculate the marginal
frequencies of all attributes and use an independence model for P(Q) (often the method of
choice in commercial relational database systems). The independence model is easy to learn,
has low time and space requirements but as we shall see below is fairly inaccurate. Mannila
et. al. [MPS99, MS] introduced the idea of using frequent itemsets and the maximum
entropy approach (we use abbreviation mazent in what follows) for query approximation.
The motivation comes from the fact that there exist many efficient data mining algorithms
for extracting frequent itemsets from massive data sets; and maximum entropy can be used
to combine these itemsets to form a coherent probabilistic model (details are discussed
below).

In this paper we improve the standard iterative scaling algorithm for learning parameters
of the maxent models by showing how one can apply bucket elimination and clique tree
approaches to take advantage of structure in the models and in the queries. We show that
depending on the number of itemsets used as an input to the maxent models their prediction
accuracy averages within 0.1-1% of the true count.

We also investigate a number of approaches which fill in the gap between the com-
putationally inexpensive (but not very accurate) independence model and the relatively
expensive maxent solution. These methods include tree structured belief networks that can
be learnt from the data [CL68] and an ad hoc method based on the pairwise marginals
between the attributes.

We provide extensive experimental results on the performance of all the methods on the
real data. We compare models in terms of the accuracy of the approximation, and the time
and amount of information the model requires.

The rest of this paper is organized as follows. In Section 2 we introduce notation and

give the formal statement of the estimation problem. Section 3 gives precise definitions of
the methods that we apply to the query selectivity estimation problem and the methodology
we use to compare them. Section 4 presents the empirical results and in Section 5 we draw
conclusions and present some extensions.

2 Statement of the Problem and Notation

Let R = {Ay,..., Ar} be a relation schema (table header) with £ 0/1 valued attributes
(variables) and r be a table of n rows over this schema. We assume that the number of
attributes is substantially smaller than the number of records, and that the data is sparse,
i.e. the average number of 1’s per row is substantially smaller than the number of attributes.
A row of the table r satisfies a conjunctive query) iff the values of the corresponding
attributes in the query and in the row are equal. We are interested in finding the number of
rows in the table r satisfying a given query) defined on a subset of its attributes. We can
view this query selectivity estimation problem in a probabilistic light and pose the problem
as estimating the true frequency of @) in the table r using an approximate (and presumably
much smaller and more efficient) probability model Pyy.

The time involved in using a probability model Py is divided into the offline cost Tp,
i.e., the time needed for building the model, and the online cost t,(()) needed to give the
approximate answer to query) using the model Py;. We use Sp to denote the amount of
space (memory) needed to store the model Py;.

For a given class of queries, let 7(Q)) denote the probability of the query). We assume
that this distribution is known, but in principle we could learn 7 (Q) for a population or
individuals. By ep(Q)) we denote the absolute error in answering the query @, i.e., the
difference between the true count Cy(Q) and the count estimated from the model Pps. We
are interested in the expectation of the relative error with respect to the underlying query
distribution E;[ep(Q)/C:(Q)]. We use the empirical relative error defined as

NQueries
A]VQ/S]:1 Ct(Q]) !

where Ng, is the number of random query drawings from 7(Q) and Cy(Q);) is the true
count of the query ();. Equation 1 is just an empirical estimate of the expectation of the
relative error.

3 Models

3.1 Full data and Independence model

There are a wide variety of options in choosing the model Pys. One extreme is to store the
entire dataset so that for each record we will only keep a list of columns that have 1’s in them.
We will have 100% accurate estimates, but for most of the real-life datasets this approach
will incur inordinately large memory requirements, namely Sp = O(c Y., Ny5(7)), where
c is the prespecified number of bits required to store a number to some fixed precision and
Nyi(7) is the number of positively initialized attributes in the record 1.

The other extreme is also easy to describe—the independence model. Since the data
is binary-valued, we only have to store one count per attribute. The probability of a

conjunctive query is approximated by the product of the probabilities of the single attribute-
value combinations occurring in the query. Obviously, Sp is small in this method, namely
O(ke) bits. The preprocessing can be done by a single scan through the data, and the online
cost consists of ng multiplications, where ng is the number of conjuncts in the query .
However, as we shall see, the quality of the approximations produced by the independence
method can be relatively poor.

3.2 Model Based on the Multivariate Tree Distribution

This model, first introduced by Chow and Liu [CL68], assumes that there are only pairwise
dependencies between the variables and that the dependency graph on the attributes is a
tree. To fit a distribution with a tree it is sufficient to know the pairwise marginals of all the
variables. The algorithm consists of three steps, namely, computing the pairwise marginals
of the attributes (complexity is O(k?n)), then the mutual information between the attributes
(complexity is O(k?)) and, finally, applying Kruskal’s algorithm [CLR90] to compute the
minimum spanning tree of the full graph whose nodes are the attributes and the weights on
the edges are the mutual informations (complexity is O(k*log k)). The dominating term in
the overall offline time complexity will be O(k?n) due to the computation of the marginals.
The memory requirements for the algorithm is O(k?c). Once the tree is learned, we can
use the standard belief propagation algorithm to get the answer to a particular conjunctive
query () in time linear in ng.

3.3 Ad Hoc Model Based on the Pairwise Marginals

An ad hoc algorithm based on the pairwise marginals will compute Py based on the chain
rule and some specfied ordering of the attributes:

nQ

Prr(qrs- -0 tng) = Pla) [T Pailgiors - 1) (2)

and substitute the higher order conditionals with first order ones:

Pu(qry -5 Gng) = Plq1) ﬁp(qil%—l) (3)

1=2

Since the ad hoc algorithm only involves computing the marginals, its memory requirements
will be the same as for the tree algorithm while the offline time cost will be less.

3.4 Maximum Entropy Model

Let us first introduce a definition of an itemset that will be extensively used in the rest of
the paper. An itemset associated with the binary table r with the schema R is by definition
either a single positively initialized attribute or a conjunction of the mutually exclusive
positively initialized attributes from R. We will call an itemset T-frequent if its count in
the table r is at least T" where T is some predefined non-negative threshold.

There exist efficient algorithms to compute all the itemsets from large binary tables (see,
e.g., [MTV94, AS94]). In practice the running time of these algorithms is linear in both
the size of the table and the number of frequent itemsets provided that the data is sparse.
Thus, by computing itemsets we won’t typically incur a high preprocessing cost.

The maximum entropy approach makes use of the T-frequent itemsets and the associated
frequency counts treating them as constraints on the query distribution. Indeed, each
pair of (a) an itemset and (b) its associated frequency count can be viewed as a value of
the marginal distribution on the query variables when they all are positively initialized.
Consider an arbitrary conjunctive query () on variables zg = {q1,.. .,an}. Forcing the
estimate Pjs to be consistent with the T-frequent itemsets for some 7" > 0 restricts Py to
a constrained set P of probability distributions within the general ng-dimensional simplex
containing all possible distributions defined on ng variables.

Information about frequencies of the T-frequent itemsets for some T > 0 in general
under-constrains the target distribution and we will need an additional criterion to pick
a unique estimate Pas(@Q) from the set P of all plausible ones. The maximum entropy
principle provides such a criterion. It essentially instructs one to select a distribution that
is as uninformed as possible, i.e. makes the fewest possible commitments about anything
the constraints do not specify. Given maximum entropy as a preference criterion, we face
a constrained optimization problem of finding Pys(zg) = arg maxpep H(P), where H(P)
is the entropy of the distribution P . If the constraints are consistent (which is clearly the
case with itemset-based constraints) one can show that the target distribution will exist, be
unique [BPP96, Ros96, PPL97, MPS99] and can be found in an iterative fashion using an
algorithm known as iterative scaling [DR72, CT84]. Note that we are estimating the whole
distribution on the variables zg, not only the particular cell corresponding to a specific
initialization of variables in the given query).

In order to get a probability estimate Pys(zg) we will only retain itemsets whose vari-
ables are subsets of zg. Enforcing the j-th constraint ¢; can be performed by just summing
out from Pys(zg) all the variables not participating in the j-th itemset (the variables in the
constraint ¢; should be kept fixed to 1), and requiring that the result of this sum equals the
true count f; of the j-th itemset in the table. Constraint ¢; will thus look like:

S Pulag)G(Al=1,.., 4L =1)=f, (4)
IQE{O,I}“Q

where G(.) is the indicator function.

Whenever we say that initialized query variables zg satisfy a given constraint c;, we
shall mean that variables zg agree in their values with all the variables ¢;. It can be shown
(see, e.g., [Jel98]) that the maxent distribution will have a special product form

PM($Q) — 1o 1]_\7[H]G(xQ satisfies ¢j) (5)
j=1
Once the constants u; are estimated, Equation 5 can be used to evaluate any query on the
variables in g, and) in particular. The product form of the target distribution will contain
exactly one factor corresponding to each of the constraints. Factor po is a normalization
constant whose value is found from the condition

Y. Pulz) =1 (6)
wQE{O,l}nQ
The general problem is thus reduced to the problem of finding a set of numbers y; from
Equations 4 and 6. The iterative scaling algorithm is well known in the statistical literature
as an iterative technique which converges to the maxent solution for problems of this general
form (see, e.g., [Jel98]). A high-level outline of the most computationally efficient version
of the algorithm [Jel98] is as follows.

1. Choose an initial approximation to Pas(zq)
2. While (Not all Constraints are Satisfied)
For (j varying over all constraints)
Update po;
Update p;;
End:;
EndWhile;
3. Output the constants f;

The update rules for parameter ;L; corresponding to the constraint c; at iteration ¢ are:

1-f;
e (7)
J
f IS

where S]t- is defined as:

Sj = > P (2q) (9)
zg satisfying c;
Equation 9 essentially calculates the constraints as in Equation 4 but using the current
estimate Py" which in turn is defined by the current estimates of the ,u? ’s via Equation 5.
Since the estimate Py’ may not necessarily meet the ¢;-th constraint, equations 7 and 8
update the terms o and p; to enforce it. The algorithm proceeds in a round-robin fashion
to the next constraints, thus at each iteration getting closer to satisfying all of them.
Convergence of the algorithm can be determined by various means. In the case of the
query selectivity estimation problem, we are interested only in one cell of the distribution
on the query variables corresponding to a particular query). We monitor this particular
cell and terminate the algorithm when

1Pu(@Q) = Pu' Q)] < ePu"TH(Q). (10)

¢ is one of the free parameters of the algorithm, in the experiments we looked at ¢ = 10~*.
It usually takes 10-15 iterations for the algorithm to meet such convergence criterion.
Preprocessing for the maxent model consists of finding the itemsets for the entire dataset
given a specified threshold 7. Suppose that we have selected N itemsets on the sets of
variables I; = {A1, ...,A{;J} and we know their frequencies f; in the table r. Then the

memory cost is O(¢(3"A_, nr + N)). The first term in this estimate corresponds to storing
the attributes that are set to 1 in each of the itemsets, and the second term - to storing the
counts of the itemsets in the table r.

The main computation in the iterative scaling algorithm falls on summing out the dis-
tribution Pr'(zg) according to Equation 9. The total number of summands in Equation
9 is 2@~ . FEach summand will have a product form and will contain at most N fac-
tors. Thus, the overall time complexity of performing summation in Equation 9 once for
all the factors p is Zj\le a;2%, where a; = ng — n;. The last estimate is obviously upper-
bounded by O(Nng2"?). Note that this estimate is independent of the size of the original
dataset. Although the exponential time complexity in the size of the query makes the
method prohibitive for large query sizes, it is still feasible to use it for queries of length 8 or

so in practice. The iterative scaling algorithm in its formulation above has linear memory
complexity in ng since the summation in Equation 9 can be performed using backtracking.

In the next subsection we discuss how one can speed-up the iterative scaling algorithm
by trading memory for time based on the structure of the itemsets used to constrain the
distribution.

3.5 Trading Memory for Time in Iterative Scaling

We propose several strategies for reducing the computational complexity of the iterative
scaling algorithm.

3.5.1 Bucket Elimination

One possible approach to reducing the high computational complexity of iterative scaling is
to apply a technique called bucket elimination [Dec99] which is essentially a smart way to
do bookkeeping as one goes along the updates of factors in the representation of the maxent
distribution. The idea here is to use the distributive law (see, e.g., [MA99]) in Equation 9.

Bucket elimination has both time and memory complexity exponential in the induced
width of the constraint graph. The notion of induced width is closely related to the size
of cliques of the graph and can be thought of being equal to the size of the largest clique
in the constraint graph after it is triangulated. Note that any itemset on nj variables will
correspond to a clique of size ny in the constraint graph.

Consider a simple example. We issue a query on six binary attributes Aq,..., Ag and
there are frequent itemsets corresponding to each single attribute and the following frequent
itemsets of size 2: {Ay =1, A3 =1}, {43 =1, A, =1}, {41 =1,46 =1}, {435 =1, A5 =1}
and {As = 1, Ag = 1}. Constraint graph H in the figure 1 shows the interactions between
the attributes in this example.

Figure 1: Constraint graph for an example problem

The maxent distribution according to Equation 5 will have the following form

6

G(A;=1 G(A;=4,=1 Loy .

P = o [n M= TL e = =06 Bedge i, 5) in H)
i=1 i

Suppose, that on the current iteration we are updating use corresponding to the itemset

{As = 1, Ag = 1}. According to our update rule in Equation 9, we need to fix attributes

As and Ag to 1 and sum out the rest of the attributes in P*(Ay, ..., Ag). We will get

Z P(Ah .- '7146) = HoMs e lis6"
Ap,.. Ay, As=1,46=1

4
1= G Al‘:AJ:
Z H N?(A 1) H ’%(1)

Ay, Ay As=1,Ag=11=1 1,5: Jedge(s,j) in H

It is easy to see that brute force summation over all the values of Ay, ..., A4 will involve
computing 16 terms, each having a product form. The bucket elimination algorithm will
produce exactly the same result but will do it more efficiently—the number of terms to
evaluate is reduced by a factor of 2 compared to the brute force method:

E P(Ay, ..., Ay, As = 1, Ag = 1) = popspiefise:

A, Ay
G(As4=1) G(A4=1 G(As3=1) G(A3=A4=1) G(As=1
‘ZH4(!)N46(!)ZNS(’)N34(e)N35(2=
A4 AS
G(Ax=1) G(A3=A4=1 G(Ax=1
‘ZH2(2)H23(3 !)ZH1(2)
A2 Al

The distributive law thus allows for a more time-efficient implementation of the iterative
scaling procedure.

3.5.2 Clique Tree Ideas

Another way to speed-up the iterative scaling algorithm is based on the decomposability of
the probability distribution with respect to the graph of the model. The detailed treatment
of such ideas can be found in several recent papers [JP93, Mal92] and in the earlier book
by Pearl [Pea88]. We provide a brief overview here.

We first create a chordal graph H' from H. To enforce chordality we use a graph
triangulation algorithm [Pea88].

For the chordal graph, the joint probability distribution on the variables corresponding
to its vertices can be decomposed into the product of the probability distributions on the
maximal cliques of the graph divided over the product of the probability distributions on
the clique intersections. The maximal cliques of the graph are placed into a join tree that
shows how cliques are interacting with one another. The join or clique tree for our problem
is given in the figure 2.

Figure 2: Clique tree corresponding to the problem in example. Cliques and their intersec-
tions are shown.

Thus, the original problem is decomposed into the smaller problems corresponding to
the cliques of the triangulated graph H’. Each smaller problem can be solved using iterative

scaling, while distributions corresponding to the intersections can be found by summing out
the corresponding distributions on the cliques. As we noted above, the time complexity of
the iterative scaling algorithm grows exponentially with the size of the query. Thus, the
algorithm that solves a number of smaller problems instead of solving a single big one may
be considerably more efficient.

Finally, it is possible to combine the join-tree approach with the bucket elimination by
first decomposing the original problem into smaller ones and then processing each of the
cliques by iterative scaling, which in turn can use bucket elimination.

Table 1: Characteristics of the Data Sets. k is the number of attributes, n is the number of
records, Ny/g is the number of 1’s in the data, F(Nys) = Nyg/n, Std(Nys,) is the standard
deviation of the number of 1’s in the record, Maxz(Nys) is the maximum number of 1’s in
the record.

k n Nl’s E(Nlls) Std(Nlls) M(l;f(Nl/S)
MS Web Data Set 294 32711 98654 3 2.5 35
Retail 52 54887 224580 4.09 3.98 44

4 Empirical Results

4.1 Conjunctive Queries

We ran experiments on the two datasets: “The Microsoft Anonymous Web” dataset (pub-
licly available at the UCI KDD archive) and a large proprietary dataset of consumer retail
transactions. Both datasets contained binary transaction data. Before learning the models
we analyzed the structure of the data and the itemsets that can be derived from it. Param-
eters of the datasets are given in the table 1.The retail dataset appears to be much more
dense than the Microsoft Web Data. For more dense data sets, the larger itemsets will be
more frequent, and the resulting constraint graph will also be more dense.

We empirically evaluated the following models for conjunctive query selectivity estima-
tion: (1) the independence model, (2) the ad hoc model based on the pairwise marginals, (3)
the Chow Liu tree model, and (4) the maxent model that used either of brute force, bucket
elimination and clique tree methods. All experiments were performed on the Pentium III,
450 MHz machine with 128 Mb of memory. We generated 500 random queries for query
sizes of 4, 6, and 8, and evaluated different models with respect to the average memory,
online time and error per Equation 1.

To select a query we first fixed the number of its variables ng = 4, 6 or 8. Then we
picked ng attributes according to the probability of the attribute taking a value of “1”
and generated a value for each selected attribute according to its univariate probability
distribution. Note, that negative values for the attributes are more likely in the sparse data
than positive ones. Thus, because of the query generation algorithm, generated queries
typically had at most one positively initialized attribute.

The plots in Figure 3 show the dependence of the average relative error on the memory
requirements for the model (or the model complexity) for the Microsoft Web data. The
independence model that uses the least memory is the most inaccurate one. The ad hoc
and the Chow-Liu tree models use the same amount of memory, however the tree model
is more accurate as expected. Note that all the maxent models, i.e. brute force, bucket

Table 2: Comparison of the Models on Arbitrary Boolean and Purely Conjunctive Queries.
Conjunctive Arbitrary

ng tp C ep tp CY ep

Indep. Maxent Indep. Maxent
4 0.052 14000 0.163 0.0021 0.059 25000 0.0066 8.2-107°
6 0.248 9200 0.304 0.0067 0.258 28000 0.0135 2.8-10~*
8 2.036 6700 0.342 0.0112 2.525 29000 0.0319 6-1073

elimination or clique tree, will have the same average error for a fixed query length since
they essentially estimate the same product form of the distribution.

That is why on this figure we only report results for a single “maximum entropy model”
(since all 4 produce the same estimates, but using different computational methods). Circles
that show results for the maxent model correspond to various values of the threshold 7" that
was used to define itemsets. We varied T as 15, 30, 50,60, 100 and 200. The higher the value
of T, the less information is supplied to the model and the less accurate the results are.
Thus, the leftmost circle corresponds to "= 200 and the rightmost to T" = 15.

The maxent model outperforms in terms of accuracy both the tree and the ad hoc
models even when the amount of memory for the maxent model is less than for the rivals.
This assertion holds true for all the query sizes. Another important observation is that for
all the models the error increases with increasing query size.

We also measured the average online time taken by various models to generate the
estimated query count. Figure 4 illustrates how the error depends on the online time for all
the models and query sizes 4,6, and 8. Among the various models the independence model
is the fastest but the least accurate of all. The ad hoc model is slightly slower and a bit
more accurate.

The Chow-Liu model fills in the large gap between the cluster of the independence and
the ad hoc models and the cluster of the maxent models. On all three plots the diamond
corresponding to the Chow-Liu model has nearly the same z-coordinate, showing a very
slow increase in processing time as query size grows. The quality of the tree model is not
as good as for the maxent models. Recall that the amount of information supplied to the
Chow-Liu model is comparable to, and for some of the threshold values is even greater than,
that for the maxent models.

The brute force, clique tree and bucket elimination maxent models have smaller errors
than the other models but it takes them longer to produce the estimates. The error for
all three types of maxent models is the same, and so is the y-coordinate for all points
corresponding to the same threshold 7’; the only difference will be in the online time. The
brute force version is the fastest on the queries of size 4: this is not surprising, as both the
clique tree and the bucket elimination methods have an overhead that dominates for the
queries of small sizes. The clique tree method becomes the fastest for the query sizes 6 and
8.

As the threshold T decreases (the corresponding points on the plots go from left to
right, top to bottom) and the number of itemsets (or memory size) increases, we see that
the difference in the online time between the maxent algorithms that employ the graph
structure and the brute force maxent decreases. We attribute this to the fact that when
the number of itemsets increases, so does the average density of the constraint graph and
the average induced width.

X Independence Model
+ Ad Hoc Model
0r % Chow-Liu Tree Model

_ Query Size 4 0 Maximum Entropy Model
S
W-1+ .
g ¥
5,
g : 0 0
- 0 o

-3 1 1 1 \O |

3 35 4 45 5 55 6
0 [.

N X Query Size 6
2 +
Ww-1r ¥
)
5 0
% 0
o2 %0
3 0

_3 1 | | | | |

3 35 4 45 5 55 6
0 [.
Query Size 8

s | +
m-1 *
£ 0 o
s 0
o2 0 0
[e)
-

3 | | | | | |
3 35 4 45 5 55 6

Log of the Memory Size

Figure 3: Average relative error on the 500 random queries as a function of model complexity
for the Microsoft Web data.

The performance of various models relative to one another on the retail data was qual-
ititatively the same as for the Web data with the maxent model being the most accurate
but most computationally expensive. However, due to the fact that the retail data is much
more dense, the memory requirements and the online running times are generally much

higher than for the Web data.

4.2 Arbitrary Boolean Queries

It is straightforward to generalize the maxent approach to handle arbitrary Boolean queries.
For a given arbitrary (not necessarily conjunctive) query we first estimate the maxent
distribution on the query variables, then transform the query to a disjunctive normal form
and evaluate the distribution on the disjuncts. This approach will be worst case exponential
in the query size but so is iterative scaling.

We have run experiments on arbitrary Boolean queries that we generated according
to the algorithm described above for conjunctive queries. The only difference is that the
connective between two attributes was selected as either a disjunction or a conjunction by
flipping a fair coin. Table 2 compares results on arbitrary and purely conjunctive queries
(ng is the query length, tp, Cy and ep are the average online time, query count and error
across 200 runs of the algorithms). The maxent models again enjoy a distinct advantage in
accuracy over the independence models.

10

Independence Model

Ad Hoc Model

Chow-Liu Tree Model
MaxEnt Brute Force
MaxEnt Bucket Elimination
MaxEnt Cliques

-05r Query Size 4

* 4+ O < O x

Log of the Error
LN
12
T

Log of the Error
W
o
T
*

Log of the Error
N
o
T
St
+

1 1 1 1 1 1 1 1 1 |
-4 3% 3 25 -2 <15 -1 05 0 05 1
Log of the Time Online

Figure 4: Average relative error on the 500 random queries as a function of the online time
for the Microsoft Web data.

5 Conclusions and Extensions

We have shown that (a) probabilistic models in general, and (b) the maximum entropy
approach in particular, provide a useful general framework for approximate query answering
on large sparse binary datasets. We have analyzed the relative performance of various
probabilistic models for this problem and showed that given sufficient information about
the data in the form of itemsets maxent approach will be the most accurate of all the
models. We also showed how bucket elimination and clique tree ideas can be employed for
speeding up the learning of the maxent models.

The work described in this paper allows for several possible extensions. For arbitrary
Boolean queries one can in principle incorporate query structure directly into the iterative
scaling algorithm or into bucket elimination (see [DS] for an example of such an approach).

In addition, there are several important open questions involving modeling of the query
distribution: how should the query model be chosen? can it be learned from online user
data? if it is known a priori, can it be profitably used in generating the approximate
probability model, e.g., can one spend more resources on modeling parts of the data which
have high probability of being queried?

11

Acknowledgements

The research described in this paper was supported in part by NSF CAREER award IRI-

9703120.

References

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining asso-
ciation rules in large databases. In Proceedings of the Twentieth International
Conference on Very Large Data Bases (VLDB’9/), pages 487 — 499, 1994.

[BPP96] A.L. Berger, S.A. Della Pietra, and V.J. Della Pietra. A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39—
72, March 1996.

[CL68] C. K. Chow and C. N. Liu. Approximating discrete probability distributions with
dependence trees. IEEFE transactions on Information Theory, 1T-14(3):462-467,
1968.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.R. Rivest. Introduction to Algorithms. MIT
Press, 1990.

[CT84] 1. Csiszar and G. Tusnddy. Information geometry and alternating minimization
procedures. Statistics & Decisions, Supplement Issue, (1):205-237, 1984.

[Dec99] R. Dechter. Bucket elimination: A unifying framework for structure-driven infer-
ence. Al 1999.

[DR72] J. N. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models.
Annals of Mathematical Statistics, 43:1470-1480, 1972.

[DS] R. Dechter and P. Smyth. Processing boolean queries over belief networks. Sub-
mitted to UAI-2000.

[Jel98] F. Jelinek. Statistical Methods for Speech Recognition. MIT Press, 1998.

[JP93] R. Jirousek and S. Preucil. On the effective implementation of the ipf procedure.
Computational statistics and data analysis, 1993.

[MA99] Robert J. McEliece and S. M. Aji. The generalized distributive law. IFEE Trans.
Inform. Theory, 1999.

[Mal92] F.M. Malvestuto. A unique formal system for binary decompositions of database
relations, probability distributions and graphs. Information Sciences, 59:21-52,
1992.

[MPS99] H. Mannila, D. Pavlov, and P. Smyth. Predictions with local patterns using
cross-entropy. KDD 1999, 1999.

[MS] H. Mannila and P. Smyth. Approximate query answering with frequent sets and

maximum entropy. To appear, ICDE 1999.

12

[MTV94] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering
association rules. In Knowledge Discovery in Databases, Papers from the 1994

AAAI Workshop (KDD’94), pages 181 — 192. AAAI Press, 1994.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., 1988.

[PPLI7] S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of ran-
dom fields. IFEEF Transactions on Pattern Analysis and Machine Intelligence,
19(4):380-393, April 1997.

[Ros96] R. Rosenfeld. A maximum entropy approach to adaptive statistical language
modelling. Computer Speech and Language, 10(3):187-228, July 1996.

13

