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Abstract

This paper addresses the problem of automatically detecting specific patterns or shapes in time-
series data. A novel and flexible approach is proposed based on segmental semi-Markov models.
Unlike dynamic time-warping or template-matching, the proposed framework provides a systematic
and coherent framework for leveraging both prior knowledge and training data. The pattern of
interest is modeled as a K-state segmental hidden Markov model where each state is responsible
for the generation of a component of the overall shape using a state-based regression function.
The distance (in time) between segments is modeled as a semi-Markov process, allowing flexible
deformation of time. The model can be constructed from a single training example. Recognition of
a pattern in a new time series is achieved by a recursive Viterbi-like algorithm which scales linearly
in the length of the sequence. The method is successfully demonstrated on real data sets, including
an application to end-point detection in semiconductor manufacturing.



1 Introduction

A fundamental problem in pattern recognition and data mining is the problem of automatically
recognizing specific waveforms in time-series based on their shapes. Applications in the context of
time-series data mining include exploratory data analysis of time-series, monitoring and diagnosis of
critical systems, classification of time-series, and unsupervised discovery of recurrent patterns. We
propose a novel Markov-based representation for waveform shapes and couple this to an efficient and
optimal Viterbi-like algorithm for online waveform detection. The detection algorithm is optimal
in the maximum likelihood sense of detecting the time-series segment which is most likely to have
been generated by the waveform model.
Much work on this problem in the data mining literature has emphasized the issue of scalability

in this context Agrawal et al. (1993); Faloutsos et al. (1994); Agrawal et al. (1995); Chan and Fu
(1999), i.e., being able to scale one’s representation method and matching algorithm to massive
time-series archives. In this paper we explicitly focus on fundamental signal representation and
matching aspects of the problem, rather than scalability. We believe that the representation and
matching problems are still not adequately solved (we explain why in Section 3) and, thus, our
philosophy is that these issues need to be addressed first before scalability is considered. Having
said all of this, we will discuss in section 5 how our approach can be scaled up in an efficient fashion.
However, the main focus is on representation and matching.
In the following sections of the paper, we begin by providing a general definition of the problem

(Section 2). In Section 3 we then discuss related prior work on this problem. In Section 4 we
propose our new segmental semi-Markov model framework for pattern representation. A specific
pattern-detection algorithm is described in Section 5, followed by results and evaluation in Section
6.

2 Statement of Problem

Consider that we have a waveform patternQ of interest and we wish to detect any occurrences of this
pattern Q in a (potentially much longer) time-series R. We will assume that Q (for “query” pattern)
is a univariate waveform, uniformly sampled in time, with a distinct “shape.” Generalizations to
multivariate and non-uniformly-sampled waveforms are relatively straightforward and not discussed
in this paper due to space limitations.
Figure 1(a) provides a simple example of such a pattern Q and its shape. This particular pattern

signals the end of what is known as the plasma etch process in semiconductor manufacturing. The
end of the process is referred to as the end-point. A skilled semiconductor engineer can manually
interpret and detect this pattern offline after the entire process is complete. However, in a real
operational manufacturing environment the pattern must be detected online in real-time, as sensor
data is measured (this automated detection enables automated control of the process). Current
detection technology using existing sensors relies on threshold-based techniques for endpoint detec-
tion. This approach typically only works well if the end-point pattern consists of a simple increase
or decrease in the level of the sensor. However, more sophisticated sensors can generate relatively
complex endpoint patterns, such as the waveform in Figure 1(a), and thresholding is no longer
applicable.
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Figure 1: An example of an interferometry sensor from a semiconductor manufacturing process: (a)
(top) a waveform pattern indicating the end of the plasma etch process is indicated with dotted line,
(b) (bottom) another run of the same process where we wish to detect a similar pattern (indicated
by dotted lines).
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An example of a new run of the process is provided in Figure 1(b), where the estimated loca-
tion of the pattern Q has been determined (manually) in the indicated window. Accurate online
detection of the pattern Q is critical for automatic control of the etch step in the process: if the
etch-step ends too early or too late the semiconductor wafer will not be etched properly, resulting
in significant financial loss. We will return to this particular semiconductor manufacturing problem
in more detail in Section 6 where we discuss experimental results.
This same type of waveform recognition problem (also sometimes referred to as “subsequence

matching”) occurs in a variety of data mining contexts. In interactive data exploration of time-series
archives (for example in finance or marketing) a data analyst may wish to know if this week’s pattern
has ever occurred before, or if the weekly pattern of customer-visits over time at one particular
store is common to other stores. In diagnosis and fault detection an engineer may wish to query
an archival database in real-time to determine what past situations (contexts) are most similar to
the current sensor pattern Q (e.g., see Keogh and Smyth (1997) for an example from space shuttle
sensor monitoring). A third data mining task is unsupervised discovery of patterns in time-series;
any data mining algorithm that tries to discover recurring (previously unknown) patterns in a
data set will need to be able to solve this “waveform matching” problem as a primitive operation
to support such unsupervised discovery (e.g., Das et al. (1998)). Thus, the problem of detecting
waveforms in time-series has broad applicability and relevance to data mining of time-series data.
The inherent difficulty of this type of recognition problem typically stems from the inherent

variability in both the waveform Q to be detected and the “background” variability in the time-
series Ri. For example, based on the physics of the associated plasma etching process, it is known
that the specific shape of the “end-point pattern” Q in Figure 1(a) can vary substantially from run
to run. Nonetheless, each realization of the pattern still possesses the same inherent general shape
characteristics that allows a human observer to detect it in a relatively straightforward, almost
gestalt, manner.
A key point here is the notion of shape variability. If we can characterize systematically the

manner in which a shape can vary in “shape-space” then in principle we have a sound footing
from which to engineer a detection system since we can characterize which types of variations
are expected and which are not. This point has not escaped researchers in the computer vision
and image analysis community, who have pioneered the notion of shape-space variability for the
potentially more difficult problem of two-dimensional pattern detection in recent years. Work such
as Amit et al. (1991); Mardia and Dryden (1998) is seminal in this context, using the notion of
identifying landmark points to represent the shape of an outline in 2d, and then characterizing
shape variability among a population of such outlines in terms of a shape-space distributions on
the vector of landmarks. Our work here is inspired by this general shape-space framework, but
applied to 1-dimensional waveform shapes. By leveraging the natural constraints imposed by a 1-
dimensional time axis (rather than 2d images), we are able to use a richer underlying representation
for our shapes than simply landmark-based models (namely generative state-based Markov models),
in turn leading to efficient and accurate detection algorithms.
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Figure 2: Results of applying a simple template matching technique to the data in Figure 1.

3 Background and Motivation

3.1 Related Work

The simplest (and weakest) approach to this problem is to use direct template-matching (aka
sequential scanning), i.e., compute the amplitude distance, point by point, between the pattern
waveform Q and subwindows within R, and calculate the mean-squared error. If the error is
below some threshold a detection is declared. Figure 2 illustrates the limitations of this approach,
using our plasma etch data as an example. There are several minima of the root mean square error
(RMSE) for different subwindows in R, several of which are below the RMSE value at the “obvious”
location based on human judgment at about time point 240, where this time point was determined
by an engineer familiar with the process. A number of variations on this theme allow for some slack
in the matching process. However, an underlying problem is that there is no notion of variability
in the template Q. Thus, even small variations in a new occurrence of the waveform may lead to
large RMSE distances and large variations in new waveforms may produce small RMSE distances
(e.g., the local minima around times 40, 95,175 and 275 in the bottom portion of Figure 2).
Dynamic time-warping (DTW) generalizes the template-

matching approach to explicitly allow for some slack in the matching of the time-axes of Q and R.
How much slack is tolerated is encoded by the choice of distance function in the DTW matching
algorithm. Berndt and Clifford (1994) introduced the concept to time-series data mining. The
main problem with DTW in a data mining context is that construction of an effective distance
measure can be highly non-trivial and very problem-dependent. A second general problem is that
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DTW focuses only on one specific type of pattern variability, namely elasticity in time, whereas in
practice other deformations may also be present.
There has bee substantial interest in this problem in the data mining literature (e.g., Agrawal et al.

(1993); Faloutsos et al. (1994); Agrawal et al. (1995); Shatkay and Zdonik (1996); Yi et al. (1998);
Chan and Fu (1999); Huang and Yu (1999); Keogh and Pazzani (1999)). Much of this work can
be characterized procedurally in the following general manner: (1) find an approximate and robust
representation for the time-series (e.g., Fourier coefficients, piecewise linear models, etc.), (2) define
a flexible matching function which can handle various pattern deformations (scalings, transforma-
tions, don’t cares, etc), and (3) provide an efficient scalable algorithm, using this representation
and this matching function, for massive time-series data sets. While these approaches in general
provide a wealth of useful heuristics for waveform matching, they do not explicitly account for
uncertainty in the matching process, i.e., there are no probabilistic semantics associated with the
matching process, Consequently, one cannot quantify in general the inherent uncertainty associated
with any detection decision. A second (related) limitation is that they do not provide a coherent
quantitative mechanism for adaptation, i.e., either adapting the detection algorithm on the basis
of training data and/or via prior knowledge. As we will see in later sections, the probabilistic
probabilistic framework in this paper can handle these issues in a systematic and straightforward
manner.

3.2 Motivation for our Approach

All of the work above can be characterized as being distance-based (where we use the word “distance”
in the loose sense of computing some scalar dissimilarity measure between two waveforms, rather
than a formal distance metric). In other words, the focus of these approaches is largely based
on defining flexible distance measures for matching two waveforms Q and Q′, given some suitable
underlying representation for the waveforms. A significant practical problem here is that a distance
measure that is optimized for one type of pattern and application domain (e.g., detecting arrythmia
patterns in cardiac monitoring) may be entirely inappropriate (and ineffective) when applied to a
different domain (e.g., financial data analysis). Thus, we question whether it is really feasible to
find “general-purpose” universal distance metrics which are broadly useful. The question remains
of course how then should one invent a new distance metric for every new application?
One answer is provided by the general approach of probabilistic generative modeling, which

is fundamentally different to the distance based concept. In simple terms, this means that we
construct a model for Q (call it MQ, typically it defines a probability distribution on waveforms).
From this model we can generate or simulate sample waveforms (i.e., other realizations of waveforms
Q from an assumed data generating process MQ). Typically this model consists of a mean shape
and a distribution function which describes variation about this mean shape.
From a matching perspective an important point is that we can measure the “similarity” of any

new pattern Q′ to our model MQ simply by computing p(Q
′|MQ), the likelihood that Q

′ came from
MQ. (Usually we take negative log-likelihood to be a distance function, − log p(Q

′|MQ), which
will be smaller the closer Q′ is to the model MQ). The generality and simplicity of the likelihood
definition underlies both the elegance and power of the approach. The distance measure (between
Q′ and Q) is implicitly specified by − log p(Q′|MQ) once the model MQ is defined. In other words
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there is no need to construct an ad hoc distance measure between patterns, since it is automatically
defined by the likelihood of the model.
For example, if MQ generates patterns of fixed length with a specific mean shape and additive

Gaussian noise, our likelihood measure (more specifically the negative of the log of the Gaussian
likelihood, log p(Q′|MQ)) simply reduces to the Euclidean distance between Q and Q

′. The power of
the approach lies in how we can generalize this concept to much more expressive modelsMQ. Indeed
this general idea is not new and implicitly permeates much work in statistical pattern recognition.
The hidden Markov model (HMM) approach to speech recognition uses precisely this framework
where Q′ is an observed acoustic waveform and we have a set of MQ’s for different words.
In a data mining context, Keogh and Smyth (1997) proposed a version of probabilistic genera-

tive models, but where the probabilistic model was defined on the observed deformations between
two waveforms, i.e., the method as proposed still required a definition of a distance measure. The
flexible Markov generative model we propose in this paper is a more direct approach, as well as
providing a more flexible modeling framework.

4 Semi-Markov and Segmental Markov Models for Waveform Rep-

resentation

An influential idea in pattern recognition is recognition by parts, i.e., decomposing an object into a
model composed of (a) individual components, and (b) the relations (temporal or spatial) between
these components. Recognition then becomes a matter of detecting individual components and
then “parsing” their likely configurations relative to each other. Following this line of thought,
we choose to model a waveform as K distinct segments with constraints on how the segments are
“linked.”

4.1 Segmental Observation Models

We begin our discussion with a standard discrete-time finite-state Markov model where each seg-
ment in the data corresponds to a state of the Markov model. Let the number of states be K.
The parameters of the model include π, the initial state distribution (typically we will constrain
the waveform to always begin with the same segment), and A, the K × K state transition ma-
trix (again, this transition matrix can be constrained to be a “left-to-right” model which enforces
a strict ordering in time of the segments). Let y = y1y2 . . . yt . . . yT be the observed waveform
measurements. The corresponding states are defined as s = s1s2 . . . st . . . sT (i.e., segment labels)
and are hidden (not observed directly). In this hidden Markov model, the joint distribution of the
observed data sequence y and a state sequence s, can be factored as:

p(y, s) =

(

T
∏

t=2

p(yt|st)p(st|st−1)

)

p(y1|s1)π(s1), (1)

We have not yet described the functional form of the conditional densities p(yt|st) which re-
late the observed data to the hidden states. In the standard HMM framework (e.g., in speech
recognition) the real-valued yt’s are often modeled as Gaussians or mixtures of Gaussians. For
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Figure 3: A simple illustration of the output of a simulated segmental Markov model. The solid
lines show the underlying deterministic components of the regression models within each state, and
the dotted lines show the actual noisy observations.

Gaussians, this implies a piecewise constant process with one mean µi per state i with additive
Gaussian noise. Mixtures allow switching between multiple means per state, but still imply a
constant “shape” process within each state as a function of time.
For waveform modeling this assumption of a constant shape plus noise is often inappropriate,

e.g., the waveform pattern in Figure 1 could not be modeled parsimoniously using a piecewise
constant model. A natural generalization of the constant model is to allow each state (or segment)
to generate data in the form of a regression curve, i.e.,

yt = fi(t|θi) + et (2)

where fi(t|θi) is a state-dependent regression function with parameters θi and et is additive inde-
pendent noise (often assumed Gaussian, but not necessarily so). For Gaussian noise we have that
p(yt|st = i) is Gaussian with a mean fi(t) which is a function of time and with variance σ

2. Note
that conditioned on the regression parameters θi, the yt’s only depend on the current state st, as in
the standard regression framework (i.e., observations are conditionally independent of everything
else given the current state and state regression parameters). Thus, the likelihood of the data can
be still be expressed in the simple product form of Equation 1, but now the p(yt|st) terms are
dependent on the time t (as in Equation 2) rather than being constant. An important point is
that this product form for the likelihood makes both parameter estimation (model learning) and
inference (pattern detection) relatively straightforward—we will take advantage of this fact when
we apply this technique to waveform detection later in this paper.
This segmental Markov model (Holmes and Russell, 1999) is a natural one for modeling wave-

form shapes. It decomposes the waveform Q into local segments, each of which consists of a
parametric functional “shape” with additive noise, and the segments are “linked” in a Markov
manner. The problem of finding the best-fitting parameters for this model, given observed data in
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the form of a particular waveform Q (or set of waveforms), is quite straightforward as long as the
parameters θi appear linearly in the shape functions fi(t|θi). Figure 3 shows a simple example of
the output of a simulated segmental Markov model. The process begins in state A which produces
observations according to a noisy linear regression model. After 30 time steps or so it transitions
to state B and produces observations according to a noisy exponential decay model.

4.2 Duration Modeling with Semi-Markov Processes

In the standard Markov framework the distribution of the durations of the system in state i is given
by

pi(td = d) = ad−1
ii (1− aii) (3)

where aii is the self-loop transition probability of state i and d is the number of time-steps spent
in state i. In other words, the Markov assumption constrains the state-duration distributions to
be geometric in form. In reality we will want a more flexible way to model duration distributions
to reflect the fact that each segment of the waveform being modeled has a typical duration length
(mean time) and some variability around that mean time.
The problem of modifying the standard Markov model to allow for arbitrary state-durations

can be addressed by the use of semi-Markov models (e.g., Ferguson 1980). A semi-Markov model
has the following generative description:

• On entering state i a duration time td is drawn from a state-duration distribution pi(td).

• The process remains in state i for time td.

• At time td the process transitions to another state according to a transition matrix A, and
the process repeats.

The state-duration distributions, pi(td), 1 ≤ i ≤M , can be modeled using parametric distributions
(such as log-normal, Gamma, etc) or non-parametrically by mixtures, kernel densities, etc. If td is
constrained to take only integer values we get a discrete-time semi-Markov model. For waveform
modeling, by including the state-duration distributions in the model, we can encode a prior on how
long we expect the process to remain in each state.
We can combine this semi-Markov approach with the segmental hidden Markov model described

in the last section. This gives us a flexible framework for defining distributions p(Q) over waveforms
Q. This waveform model allows us to specify shape of the waveform within each segment, the mean
and variance of the duration length for each segment, and the ordering of the segments. Having a
probabilistic model for our waveforms has certain distinct advantages that are worth mentioning
explicitly:

• we can estimate the parameters of our model from data,

• we can combine these estimates with prior knowledge using Bayesian priors, and

• we can quantify the likelihood that the waveform Q occurs in any arbitrary position in a
time-series R.

We elaborate further on these issues in the discussion in the next section below.
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Figure 4: The example waveform pattern Figure 1(a), and its piecewise linear representation.

5 Waveform Pattern Matching

Given the general framework presented above we now formulate a specific algorithm for detecting
a waveform pattern Q in a time-series R. Specifically, given an example of the waveform Q, we
show how to construct a semi-Markov segmental hidden Markov model to fit this waveform, and
then give a computationally efficient solution for detecting any instances of this waveform which
are embedded in a time-series R.

5.1 Constructing a Waveform Model from Data

The construction of the model begins with a piecewise linear representation of the example waveform
pattern using a standard piecewise linear segmentation algorithm (Imai and Iri, 1986; Zhu and Seneviratne,
1997). For illustration, we show in Figure 4 the piecewise linear representation of the example wave-
form pattern Figure 1(a), where we arbitrarily set the error tolerance ε = 1.0 for the segmentation
algorithm so that the approximating error at each point will not exceed ε in amplitude on this
data. We could also automatically set the error tolerance by calculating the noise scale in the data,
e.g., by filtering, or Fourier transformations. We are assuming each segment to be linear, although
polynomials, splines, etc., could also be used.
Let the number of segments in the pattern be K. We construct a K-state segmental HMM each

state of which corresponds to one segment in the piecewise linear representation. Because one can
only start from segment 1, then go to segment 2, etc., the transition matrix A will be left-to-right,
i.e., Ai,i+1 = 1, Ai,j = 0 if j 6= i + 1 and Ai,j is the probability of going to state j given that the
process is in state i. The initial state distribution will be π = [1, 0, . . . , 0]. The output probability
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distribution of state i will be of the form

p(ym+1ym+2 . . . ym+di
|si) = p(di|si)p(θi|si)

m+di
∏

t=m+1

p(yt|fi(θi, t)) (4)

where

• p(di) is the probability of the duration di (i.e., the length of the segment in time),

• θi is state i’s parameter of the regression function which has functional form fi(θi, t),

• p(yt|fi(θi, t)) is assumed to be a Gaussian distribution with mean fi(θi, t) and variance σ
2
y .

Since we are using piecewise linear representation of the example waveform pattern here, the re-
gression function fi(θi, t) will be a linear function fi(θi, t) = bit + ci. Of the two parameters, the
intercept ci is ignored in the model and allowed to be freely fit in the detection process to allow
shifting in time. Thus, θi includes only bi which is set to be the slope of the segment in the ex-
ample waveform pattern. In the absence of prior knowledge about how this slope will change, for
simplicity, we assume θi to be fixed (non-random) in Equation 4.
The state duration distribution p(di|si) for state i is set to be a left-truncated Gaussian distribu-

tion with mean being li, the length (in time) of the corresponding segment in the example pattern,
and standard deviation being li × k% (where k was set to 20 for the results reported below).
The variance of the additive noise, σ2

y , is set to be the mean squared error of the piecewise linear
representation (as fitted to the original data).
As described here the training procedure essentially amounts to setting the means and vari-

ances in an appropriate data-dependent manner based on a single waveform observation. The
generalization to training a model from multiple waveforms is straightforward, if all waveforms are
represented by the same number of linear segments. A completely unsupervised approach (using
multiple waveforms) is to directly train a semi-Markov segmental hidden Markov model using the
EM algorithm. Here the number of segments (states) is fixed a priori and EM determines the mean
lengths and shapes for each segment by maximizing the overall likelihood of the observed waveform
data.

5.2 A Viterbi-like Algorithm to Compute the Most Likely State Sequence

Once we have a semi-Markov segmental hidden Markov model MQ for our waveform(s) Q, a basic
task is to find the most likely state (i.e., segment label) sequence ŝ = s1s2 . . . st . . . for a data
sequence y = y1y2 . . . yt . . ..
Here we give a recursive Viterbi-like algorithm based on dynamic programming. At each time t,

this algorithm calculates the quantity p̂
(t)
i for each for each state i, 1 ≤ i ≤ K, where p̂

(t)
i is defined

as
p̂
(t)
i = max

s

{p(s|y1y2 . . . yt)|s = s1s2 . . . st, st = i}. (5)

In other words, p̂
(t)
i is the likelihood of the most likely state sequence that ends with state i (i.e.,

yt is the last point of segment i).
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function s1s2 . . . st = MLSS(y1y2 . . . yt)

1. for each state i

2. Compute p̂
(t)
i , PREV (i, t);

3. end for

4. j = argmaxi p̂
(t)
i ;

5. [j′, t′] = PREV (j, t);
6. for k = t′ + 1 to t

7. sk = j;

8. end for

9. if (t′ > 0)
10. [j, t] = [j′, t′];
11. goto 3;

12. else

13. return;

14. end if

procedure DETECT(y1y2 . . . yt ...)

1. t = 1;

2. s1s2 . . . st = MLSS(y1y2 . . . yt);

3. if (st == K)

4. declare ‘found’;

5. stop;

6. else

7. t = t + 1;

8. goto 2;

9. end if

Figure 5: Pseudo-code for MLSS (finding most likely state sequence s1s2 . . . st for data sequence
y1y2 . . . yt), and DETECT (online detection of waveform).

The recursive function for calculating p̂
(t)
i is

p̂
(t)
i = max

di

(

max
j

p̂
(t−di)
j Aji

)

p(di)p(yt−di+1 . . . yt|θi) (6)

In the above equation, the outer maximization (maxdi
) is over all possible values of the duration

di of state i. Recall that yt is now fixed to be the last point of segment i, the last point of the
previous segment will be t− di. For a given di, the inner maximization (maxj) is over all possible
previous states j that transitions to state i at time t− di. The state j and the time t− di for the

maximum value p̂
(t)
i are recorded in PREV (i, t).

Obviously, the overall most likely state sequence for the data sequence y1y2 . . . yt will be the

state sequence with the likelihood maxi p̂
(t)
i , and can be found by tracing back using PREV (i, t)

(see the pseudocode “MLSS” in Figure 5). Note that this detection procedure is optimal in a
maximum likelihood sense, i.e., it finds the state-sequence which is most likely to account for the
observed data.

5.3 Online Detection of the Waveform

To detect a waveform inside a (much longer) time series y1y2 . . . yt . . ., an obvious approach would
be to match the model against every subwindow yiyi+1 . . . yj , find the most likely state sequence
sisi+1 . . . sj , and declare “found” if the likelihood is above a certain threshold. The problems with
this approach are (1) how to set the likelihood threshold and (2) the redundant computation from
the fact that the computation for every subwindow is carried out from scratch, even if a subwindow
overlaps with another subwindow.
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To deal with these problems, we augment the model with two extra “background” states: a
pre-pattern background state (state 0) to model the data before the pattern, and a post-pattern
background state (state K + 1) for the data after the pattern. This augmented model may be
seen as a “global” model that can be matched directly against the whole time series yiyi+1 . . . yj

(instead of the subwindows). These background states are also called garbage states in the speech
recognition literature (Wilpon et al., 1990). The parameters of the background states (e.g., the
state duration distribution, the noise variance, parameter θ of the regression function, etc.) are
estimated in a similar way to other (ordinary) states in the model. They could instead be set
according to prior knowledge. For example, the probability distribution on the state duration of
the pre-pattern background state (i.e., its length in time) can be set to reflect a prior probability
distribution of the starting time of the pattern.
With this augmented model, we run the MLSS algorithm in Figure 5 online as new data points

y1y2 . . . yt . . . are coming in. If, at time t, st = K in the most likely state sequence where K is the
last segment in the waveform, we declare that the waveform is detected with end-time yt. See the
pseudocode DETECT in Figure 5.

5.4 Complexity of the Method

The complexity of the above detection algorithm will be O(|R| × (K +2)×C) where |R| is the size
of the new time series R, K+2 is the number of states (K pattern-states and 2 background states),
and C is the complexity of evaluating Equation 6. Generally speaking, C will be O(vi × (K + 1))
where vi is the number of possible values for di (the duration of state i), K + 1 is the maximum
number of predecessor states for any state. In the current setting where the transition matrix A is
left-to-right, each state i has only one predecessor state, so C = O(vi). Letting V = maxi vi, the
overall complexity of the algorithm is O(|R| ×K × V ). Thus, this method is essentially linear in
|R|.

6 Experimental Results

6.1 Results on Plasma Etch Process Data

Plasma etch (Manos and Flamm, 1989; Williams, 1997) is a critical process in semiconductor manu-
facturing. A semiconductor wafer is bombarded with a gas containing various chemical components
within a plasma gas chamber. Different gas combinations are used in sequence to remove different
layers from the wafer. Since there is no direct way of measuring when a layer has been etched
through, control of the plasma process (i.e., when to halt gas flow so as to stop etching) is achieved
by inferring the nature of the material being etched indirectly from the composition of the gas
within the chamber. For example, from the interferometry data in Figure 1(a), an engineer can
manually detect the endpoint by seeing the pattern (enclosed in the dotted rectangle). Here is
where the pattern matching algorithm fits in. We would like to detect the same pattern in the
interferometry data of future runs, e.g., Figure 1(b).
For comparison, we ran both the template-matching (Figure 2) and dynamic time warping

(Figure 6) techniques. The global minima in the two resulting error curves do not correspond to
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Figure 6: Results of applying dynamic time-warping to the data in Figure 1.
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Figure 7: Results of applying the semi-Markov segmental model to the data in Figure 1. The

SCORE is [p̂
(t)
K ]

1

t , the normalized likelihood for state K (the last segment of the pattern).
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Figure 8: Results of applying the semi-Markov segmental model to financial time-series. A pattern
is picked from NYSE Composite Index (top) to build the model, then we search for this pattern in
the NYSE Utility Index (bottom).

the best match, i.e., both minima correspond to false alarms around time t = 90 seconds.
We built a semi-Markov segmental model for the pattern in Figure 1(a), and ran the pattern

matching algorithm (the DETECT procedure in Figure 5) on the new time series in Figure 1(b). At
time t = 252, the DETECT procedure correctly detected the end of the pattern, i.e., the maximum
of the score function agrees precisely with the engineer’s subjective judgement on the location of
the end-point.

It is also interesting to look at the normalized likelihood [p̂
(t)
K ]

1

t for state K as a function of time

t. (Recall that p̂
(t)
K is the likelihood of the most likely state sequence ending with state K at time t,

and K is the last segment of the pattern. If p̂
(t)
K is the highest among all states, then the pattern is

detected.) We plot [p̂
(t)
K ]

1

t as the SCORE in Figure 7. It can be seen that the peak of the SCORE
curve is at t = 252 which is when the online DETECT procedure finds the pattern.

6.2 Results on Financial Data

A second dataset is the New York Stock Exchange (NYSE) daily index closes for 1999 (available
online at http://www.nyse.com/marketinfo/stats/Nya99.prn.) This dataset contains, among
others, the NYSE Composite Index, and the Utility Index, as shown in Figure 8. These two indices,
like the two semiconductor manufacturing sensor runs, share some common patterns, but are still
quite different from each other (e.g., the amplitude of the Composite Index is between 560 and
680, while the Utility Index is between 450 and 600.) In Figure 8, we show the results of selecting
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Figure 9: ECG time series.

a pattern in the NYSE Composite Index (top), building the semi-Markov segmental model, then
searching for this pattern in the NYSE Utility Index (bottom). The algorithm correctly finds a
similar pattern.

6.3 Results on ECG Time Series

The third data set (Figure 9) is an ECG time series (http://www.ms.washington.edu/~s530/
data.html) from Percival and Walden (2000) . A heart-beat pattern was selected from an early
part of the time-series (Figure 10, top) and used to build a semi-Markov segmental model using the
default method described in Section 5.1. The online detection algorithm of Section 5.3 was then
used to detect later occurrences of the pattern as in Figure 10 (bottom). Note that the general
method described in Section 5.3 for online detection of a single pattern can easily be generalized to
the problem of finding multiple repeating patterns (e.g., multiple repeating heart-beats as in this
data set) by allowing transitions in the Markov model from the end state back to the start state,
i.e., allowing repeated transitions through the state sequence.

7 Discussion and Conclusions

Overall we have found the proposed technique to be quite robust. The main parameter that is
manually chosen is the standard deviation in the state duration models, which was set to 20% of
the mean duration in the results described above. Generally speaking this should be a function
of prior knowledge, i.e., how much variation in time do we expect in waveforms? On the data
sets above we have found empirically that the method finds the ideal detection over a broad range
of values both above and below 20%, indicating that the method is not overly sensitive to this
parameter. The degree of sensitivity will of course in general be dependent on the nature of the
both the waveform Q and the background time series R. Of course if one is training on multiple
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Figure 10: Results of applying the semi-Markov segmental model to recognize the “heart beat”
pattern in the ECG time series. Top: an example pattern. Bottom: a similar pattern found by the
pattern matching algorithm.

waveforms this variance term can be estimated directly.
There are a number of natural extensions of the proposed framework which we do not discuss in

detail here due to space limitations. For example, in the semiconductor manufacturing process there
are multiple runs (and associated endpoints) over time. One can extend the framework proposed
here to include an online adaptive Bayesian component, where the model MQ is adapted over time
as new time series are added to the archive. An interesting issue here is how to incorporate both
subjective human judgement (supervised labeling of waveforms) with the type of unsupervised
detection demonstrated here. Another research direction is to embed this framework within a
hierarchical Bayesian model with random variation in the segment coefficients rather than keeping
them fixed. The underlying semi-Markov segmental hidden Markov model for waveforms can also
be generalized, allowing for further modeling flexibility such as stochastic grammars, hierarchical
hidden Markov models, and so forth.
In summary, we have proposed a general model-based framework for waveform matching, using

generalized Markov models to encode the shape of a waveform. We believe that this can provide
a more flexible and practical methodology than competing distance-based methods. For example,
we illustrate how the model can be learned from data and how we can perform detection in a
relatively automatic fashion using basic likelihood concepts. Based on these results we conclude
that the proposed semi-Markov segmental HMM appears to be quite a useful, flexible, and accurate
framework for time-series waveform pattern detection.
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