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Abstract

In this paper we present a family of mod-
els and learning algorithms that can simul-
taneously align and cluster sets of multidi-
mensional curves measured on a discrete time
grid. Our approach is based on a generative
mixture model that allows both local non-
linear time warping and global linear shifts
of the observed curves in both time and mea-
surement spaces relative to the mean curves
within the clusters. The resulting model
can be viewed as a form of Bayesian net-
work with a special temporal structure. The
Expectation-Maximization (EM) algorithm
is used to simultaneously recover both the
curve models for each cluster, and the most
likely alignments and cluster membership for
each curve. We evaluate the methodology on
two real-world data sets, and show that the
Bayesian network models provide systematic
improvements in predictive power over more
conventional clustering approaches.

1 Introduction and Motivation

Data in the form of sets of curves arise naturally
across a variety of applications in science, engineering,
and medicine. Examples include time-course measure-
ments from sets of genes (Eisen et al., 1998), estimated
trajectories of individuals or objects from sequences
of images (Gaffney & Smyth, 1999), and biomedical
measurements of the response of different individuals
to drug therapy over time (James & Sugar, to appear,
2003). In this paper we will use the term “curve” to
denote a variable-length series of data measurements
observed as a function of some independent variable
such as time. More generally, each individual “curve”
can consist of set of multi-dimensional (vector) mea-
surements as a function of the independent variable,
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Figure 1: Cyclone intensities as a function of time.

rather than a single measurement. For example, in
modeling spatial trajectories of objects the measure-
ments at each time point can include the spatial x, y
location of the object as well as features characteriz-
ing the object’s state (shape, motion parameters, and
so forth). In statistics, such data are sometimes re-
ferred to as “functional data” (Ramsay & Silverman,
1997), emphasizing the fact that the observed data are
functions of an independent variable.

As an example, Figure 1 shows a set of 1-dimensional
curve data where each individual curve represents the
intensity of the center of a particular cyclone over its
lifetime. Figure 2 shows another set of curves, this
time a set of heartbeats extracted from an ECG time-
series. A practical problem with such data is that the
curves tend to be misaligned in various ways. For
example, in both Figures 1 and 2, variations among
curves in the amplitude and time axes could be sub-
stantially reduced by aligning individual curves in dif-
ferent ways. The lack of alignment here is both an
artifact of the methods used to extract these curves
(e.g., in detecting and tracking cyclone centers in sea-
level pressure data, Gaffney & Smyth, 2003), as well as
being due to natural variability in the underlying (and
unknown) dynamic processes generating the data.
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Figure 2: ECG time series segments containing heart-
beats.

More generally, all manners of (unknown) transforma-
tions may have been applied to observed curve data,
such as offsets and scaling in the observed measure-
ments or more complex forms of non-linear warping
of the signal. Thus, a significant body of work exists
on techniques that attempt to remove various classes
of transformations from observed curve data, such as
time warping (Wang & Gasser, 1997), curve registra-
tion (Ramsay & Li, 1998), structural averaging (Kneip
& Gasser, 1992), and point-set matching for image reg-
istration (Gold et al., 1998).

A second body of work in the analysis of sets of curves
consists of curve clustering techniques. Since the data
are usually being generated by a set of different in-
dividual “dynamical systems” (or the same system at
different times) it is natural to ask the question in
many applications as to whether different natural clus-
ters (or regimes) of these systems exist in the data, e.g.,
clusters of genes, storms, or individuals. Probabilis-
tic mixture models have been found to be particularly
useful in this context. For example, regression-based
mixture modeling focuses on the finding of two or more
underlying functions (e.g., polynomials) from which
the observed data might have been generated. This
technique, known as regression mixtures (DeSarbo &
Cron, 1988; Jones & McLachlan, 1992) extends the
standard finite mixtures framework to the case where
component density models are replaced with condi-
tional regression density models. More recent work
along this line focuses on learning individual models
for each curve during the clustering. This can be han-
dled for example, through the integration of linear ran-
dom effects models with regression mixtures (Lenk &
DeSarbo, 2000; Gaffney & Smyth, 2003). Further ex-
tensions have been developed that use non-parametric
models for the mean curves, such as kernel regression
models (Gaffney & Smyth, 1999) and splines (James
& Sugar, to appear, 2003; Bar-Joseph et al., 2002).

In prior work to date on curve modeling, curve align-

ment techniques and curve clustering have largely been
pursued separately and independently. Clustering in
the presence of curve transformations is conceptually
problematic: we may not be able to effectively cluster
the data without first removing the transformations,
but on the other hand we may not be able to effectively
remove the transformations if we do not know the clus-
ter memberships. One approach is to preprocess or
post-process the sets of curves by employing align-
ment or registration techniques such as dynamic time-
warping before or after clustering (Wang & Gasser,
1997). The disadvantage of such an approach is that
the discovery of the curve transformations and curve
clustering are decoupled from each other, which can in
principle weaken the ability of the algorithm to detect
structure in the data.

One area where there has been some success to date
in simultaneous alignment and clustering is with image
data. In particular, Frey and Jojic (2003) use EM to
learn mixtures of image patches subject to linear off-
sets and rotation. Because 1-dimensional curve data is
much more constrained than 2-dimensional pixel im-
ages (given the implicit ordering on the data points
in 1-dimension) we are able to address in this paper
a more general class of transformations for clustering
curve data than is feasible in the 2-dimensional case,
in particular, non-linear warping of the independent
variable (“time-warping”).

In this work we make the specific assumption that we
can achieve useful results by restricting attention to
transformations that are “on-grid” in terms of the in-
dependent variable, i.e., that shifts and warps are con-
strained to occur on the same sampling grid that the
data are measured on. This is in direct contrast to
“off-grid” methods that interpolate between the grid-
ded observations, such as polynomial or spline models.
The advantages of the on-grid approach (as we will see
later in the paper) are that (a) we can use a completely
non-parametric model for the mean curves within each
cluster by avoiding parametric assumptions on the in-
terpolating function, and (b) we get a computation-
ally feasible procedure for solving the joint cluster-
ing/transformation problem by using a discrete-time
(or discrete-grid) Bayesian network. Of course for
certain applications (for example when data are very
sparse for each curve) the interpolative (or functional
modeling) methods might be more appropriate. In this
paper, however, the focus is on the “on-grid” class of
modeling techniques. Experimental results later in the
paper bear out that substantial and systematic im-
provements in modeling power can be gained by the
“on-grid” approach alone.

The primary novel contribution of this paper is the
learning of clusters of curves in the presence of certain



classes of curve transformations. While there has been
a significant amount of prior work on each of curve-
clustering and curve-transformations in isolation (as
discussed above) there has been no work that we are
aware of that specifically addresses simultaneous learn-
ing of clusters and transformations of curve data. The
specific class of curve transformations we address in-
cludes both global discrete-valued translations and lo-
cal non-linear warping along the time (or independent
variable) axis, and real-valued additive offsets in the
measurement (dependent variable) axes. Extensions
to include other forms of transformations such as mul-
tiplicative scaling of the curve measurements can also
be developed but are not specifically addressed in the
paper. In a related paper (Chudova et al., 2003), we in-
vestigate curve clustering techniques that allow global
offsets in both the measurement variables and indepen-
dent variables, but without any local time-warping.

The paper is organized as follows. Section 2 intro-
duces the Bayesian network model for curve cluster-
ing. Section 3 describes a general parameter estima-
tion framework based on the EM algorithm, including
a discussion of computational complexity. Section 4
describes the evaluation of the models and parameter
estimation algorithms using two real datasets: clus-
tering ECG data and clustering of extra-tropical cy-
clones. In Section 5 we discuss future directions and
conclusions.

2 Probabilistic Curve Clustering

2.1 A Generative Model for Sets of Curves

In this section, we describe a generative model for
multidimensional curves observed on a fixed time grid
(henceforth in the paper we will refer to the inde-
pendent variable as “time” although in general this
need not be the case). The model allows for (a) het-
erogeneity via clustering, (b) both global and local
discrete-valued shifts of the measurements in time, and
(c) global real-valued translations of the measurement
axes. In what follows we introduce each of these fea-
tures in turn. We use boldface symbols for vectors and
regular symbols for scalars.

2.1.1 Heterogeneity in the observed curves

We use a finite mixture model with K components to
allow for heterogeneity in the generated curves: the
probability of an individual curve Y given a set of
model parameters Θ is defined as:

P (Y|Θ) =
K∑

k=1

αkP (Y|Z = k) (1)

where αk is the probability of component k and Z is
a random variable indicating cluster membership for
curve Y.

2.1.2 Global time shifts and local
time-warping

To generate curves allowing both global linear time-
shifting and local non-linear time-warping, we allow
the model to traverse different paths on the time grid
when generating a curve from a particular compo-
nent. We assign probabilities to the paths and assume
first-order Markov dependence between the consecu-
tive points on the path along the time grid. We use
G = (g1, . . . , gL) to denote a path on the time grid for
generating an observation vector Y of length L, and
obtain the likelihood of Y by marginalizing over all
possible paths:

P (Y|Θ) =
K∑

k=1

∑

G
αkP (Y|k,G)P (G|k)

P (G|k) = P (g1|k)
L∏

j=2

P (gj |k, gj−1)

To generate curves with global time shifts, we allow a
path to start in any of the first M points on the grid.
This constraint is encoded by the initial state distribu-
tion in component k: P (g1|k). In the absence of any
local transformations, the path then moves forward
from its starting point“linearly” by one time point at
a time. To produce local non-linear time deformations,
we allow the path to skip up to S points forward on
the time grid, or to remain at the current time point
with some small probability. This set of constrains is
encoded by the transition distribution for component
k: P (gj|k, gj−1)

Figure 3 shows an example of a transition structure
for a model with 3 mixture components and global
(but not local) time-shifts. There are 3 possible initial
starting positions on the time grid, allowing curves of
lengths between 1 and 6. The circles in the diagram
represent positions on the time grid within each mix-
ture component and the arrows correspond to non-zero
transition probabilities. Figure 4 shows an example of
a transition structure for a model that additionally al-
lows local skips and repeats along a path.

Note that if the observed measurements at time j are
conditionally independent of each other given the pa-
rameters of the model and cluster membership, the
mixture model described above can be viewed as a
form of hidden Markov model (HMM). The hidden
states H of this HMM encode both cluster member-
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Figure 3: Transition structure of the HMM corre-
sponding to a mixture model with linear time shifts,
K = 3, M=3.
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Figure 4: Transitions within a single component that
allows local time-warping, M = 3, S = 1.

ship and location on the time grid and correspond to
the circles in Figures 3 and 4. Casting the problem
in an HMM framework provides for effective inference
with the proposed model. However, as we will see be-
low, special care is required when we introduce global
offsets in the measurement axes as the standard inde-
pendence assumptions of the HMM are then violated.

2.1.3 Translation of the measurement axes

To model the shapes of the curves rather than their
absolute values, the generative process is invariant to
the translation of the observed curves in the measure-
ment space. To simulate curves with translations, we
introduce an additional offset variable δ per curve, and
allow each mixture component to generate curves with
offsets relative to the component’s mean vector. The
conditional likelihood of the observed curves is inde-
pendent of the value of the offset, and thus curves with
the same shape but different origins are identical under
this generative model.

Figure 5 shows the Bayesian network structure for the
proposed generative model. The network is instanti-
ated given a particular curve with observed measure-
ments Y of length L. The network includes the follow-
ing variables: the path along the time grid G1, . . . , GL

(unobserved), the component identity Z (unobserved),
the offset vector δ (unobserved), and the measured
curve Y1, . . . ,YL (observed). Naturally, we have an
arrow from the component identity Z to Y’s and G’s,
from time grid positions Gj to observations Yj , and
from every time grid position Gj to the next one Gj+1,

Y1 Y2 ... YL

G1 G2 ... GL

Z

Figure 5: A Bayesian network for a curve Y of length
L; measurement offsets modeled with a random vari-
able.

Y1 Y2 ... YL

G1 G2 ... GL

Z

Figure 6: A Bayesian network for a curve Y of length
L; measurement offsets modeled with a deterministic
function.

the last two as in a regular HMM. However, the obser-
vations are not independent given cluster membership
and location on the time grid, as is the case in an
HMM, but coupled through the offset vector. In re-
lating Figure 5 and Figure 4 note that Figure 4 is a
state transition diagram with edges that correspond
to non-zero entries in the conditional probability table
relating nodes Gj and Gj+1 in Figure 5.

The inference in the model pictured in Figure 5 re-
quires summing out all possible components and paths,
and integrating over the values of the offset variable.
The coupling of the observed measurements through
δ prohibits the recursive computation that effectively
handles exponentially large number of paths in a reg-
ular HMM, and makes the problem intractable.

To make the inference tractable we use the follow-
ing heuristic approximation: we define the offset
δ(Y, k, g1) to be a deterministic function of the com-
ponent identity k and the assumed global time shift
g1. The value of the D-dimensional offset vector
δ(Y, k, g1) is chosen so that the translated curve
Y−δ(Y, k,G) is best aligned (under some norm) with
the portion of the kth component’s mean curve start-
ing at position g1 on the time grid. We ignore possi-
ble time skips and repeats along the path on the time
grid G when calculating the value of the offset vec-
tor, which makes the problem tractable. This leads to
a different structure for the underlying Bayesian net-



work as shown in Figure 6.

We have essentially replaced the coupling of observed
values through the offset δ with a dependence on the
assumed global time shift. Given Y, Z and g1, we can
evaluate the probability of observing Y(j) at Gj and
perform tractable inference using standard recursive
algorithms.

Note that more traditional methods of dealing with
measurement axes translations (such as subtracting
the mean value or first measurement, etc.) are nei-
ther applicable nor optimal in the context of unknown
component identity and unknown time shifts—this is
confirmed by the experimental results presented later
in the paper.

2.1.4 Conditional likelihood given a path

To model multi-dimensional curves we assume that the
measurements in different dimensions are condition-
ally independent given a position on the time grid and
component identity. The observation at a given point
j on the time grid, under mixture component k, has a
multivariate normal distribution with diagonal covari-
ance matrix Ck(j) centered around a D-dimensional
mean µk(j).

Given the component identity and the first point on
the path along the time grid, the conditional proba-
bility of curve Y is evaluated in two stages: at first,
the value of the optimal offset δ∗ is calculated, and
then the probability of the translated curve Y − δ∗ is
calculated under the kth component’s distribution:

δ∗ = arg min
δ

‖Y − δ − µk(g1 : g1 + L − 1)‖2 (2)

P (Y|k,G) ∼
L∏

j=1

N(Y(j) − δ∗|µk(gj),Ck(gj)) (3)

where Y(j) is the jth D-dimensional observation
within a single curve Y, and µk(a : b) is the set of
curve means for component k defined between posi-
tions a and b on the time grid. We use the Euclidean
norm in expression (2), but other notions of similarity
could equally well be used to define the best offset vec-
tor δ in the measurement space, e.g., based on specific
prior knowledge of the process generating the data.

3 Parameter Estimation

We use the EM procedure to estimate the parame-
ters of the model described above, given a set of ob-
served curves. The EM algorithm uses the standard

message passing computations involved in estimating
the parameters of a Bayesian network, where the spe-
cific network is that shown in Figure 6 with transition
structure as provided in Figure 4. The network in-
cludes a number of undirected cycles due to the edges
connecting the G’s and cluster variable Z with other
nodes in the network. We use loop cut-set conditioning
on the values of G1 and Z when calculating the dis-
tributions over the other latent variables in the E-step
and sufficient statistics in the M-step.

The time complexity of a single iteration of this al-
gorithm is linear with respect to each of the follow-
ing: the number of curves N , the dimensionality of
the curves D, the number of clusters K, the maxi-
mum amount of shifting allowed M , and the maxi-
mum number of states reachable from any state S +2.
However, it is quadratic in the length of the curves L
(if we assume for simplicity that all curves have the
same length), resulting in an overall time complexity
of O(NDKMSL2). If we consider the model without
local time-warping, the time complexity is linear in all
remaining parameters: O(NDKML). The complex-
ity becomes quadratic in L when we have to evaluate
the alignments of curves to cluster centers with time
skips. This is expected since the alignment time for
non-probabilistic dynamic time warping algorithms is
also quadratic in the length the curves.

The generative model described above treats consecu-
tive mean values (at time t and t + 1) for the cluster
mean curves as being independent. In practice it is
often reasonable to assume that the means are depen-
dent, or equivalently that the underlying true clus-
ter mean curves should have some degree of smooth-
ness. In Chudova et al. (2003) we describe how the
model above can be extended to include a hierarchi-
cal Bayesian prior on the means, where the first level
of the hierarchy introduces dependence between the
means P (µt+1

k |µt
k, σ2), and the second level controls

the degree of smoothness P (σ2). We have found that
this Bayesian smoothing produces systematically bet-
ter out-of-sample predictions when the number of ob-
served data points is relatively small. In the results
reported in this paper we do not use these Bayesian
smoothing priors and instead use a simpler maximum
a posteriori (MAP) approach with standard Dirich-
let priors on the Bayesian network probability tables
and maximum likelihood estimates of the curve means.
More complete details on the Bayesian estimation re-
sults are available in Chudova et al. (2003).

4 Experimental Results

We evaluate the proposed methodology for joint clus-
tering and time-warping of curves using two differ-



Table 1: Performance of Gaussian mixtures and models with time-shifting and warping on the ECG dataset.

Local Time Warping Global Time Shifting log P Within-Cluster StDev
None None 1.06 0.072
S = 2 None 1.29 0.057
S = 2 M = 2 1.32 0.053

Figure 7: Sample alignment of the ECG data (top)
with the recovered cluster mean (bottom).

ent real-world data sets: (a) ECG time series data
and (b) cyclone trajectories. To analyze the perfor-
mance of the models we use cross-validated log prob-
ability (logP) scores (average log-likelihood assigned
to unseen curves) and in-sample within-cluster vari-
ance. While we expect the within-cluster variance to
be reduced due to time warping and alignment, it is
informative to see precisely how much gain can be
achieved using these techniques. The out-of-sample
scores are obtained using 10-fold cross-validation. All
methods are allowed 5 random starts of EM at each
fold, and initialization is carried out by selecting K
random curves as the initial K cluster means. Mea-
surement offset vectors (the δ parameters) are esti-
mated in all models. Due to space limitations only
a subset of results are reported here—more complete
experimental results, including applications to time-
course gene expression data can be found in Chudova
et al. (2003).

4.1 ECG Time Series

The ECG heartbeat is a clearly recognizable wave-
form shape—yet different examples of heartbeats even
from the same individual can not necessarily be eas-
ily aligned due to the complex dynamics and varia-
tion in heartbeat generation over time (e.g., see Fig-
ure 2). We used a set of ECG data from Percival and
Walden (2000). We chose a section of an ECG time-
series from a particular individual, and manually di-
vided this into 14 segments of slightly varying lengths,
each corresponding to a single heartbeat cycle. We
further split each segment into 5 pieces, so that each
piece corresponds to a particular phase of the cycle—
thus, we expect that there are 5 natural clusters in the
data. The resulting 70 curves were provided as input
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Figure 8: Cluster models with time transformations
(top) and a standard mixture of Gaussians model (bot-
tom): cluster means ± 2 standard deviations.

to the joint clustering and alignment algorithm with
the number of mixture components K = 5. Figure 2
shows data from one of the resulting clusters (without
any alignment). Note that the heartbeat data we used
in our experiments do not correspond to a real appli-
cation (although the data itself is real). The goal is
to provide an illustrative example of a broad class of
“waveform recognition” problems encountered in med-
ical and industrial applications where waveform shape
is an important characteristic of the underlying dy-
namic process.

We report the results of applying both a standard
Gaussian mixture model and models with transfor-
mations to this data set. In the standard mixture
approach, we treat the curves as points in an Lmax

dimensional space, where Lmax is the length of the
longest curve. We treat the Lmax − Li measurements
at the end of curve Yi as missing (clearly it would be
better to try to align curve Yi in some manner, but
this is intended to be a baseline technique). We also
used models with global time shifts (M = 2) and lo-
cal repeats and time-skips (S = 2). Table 1 contains
cross-validated logP scores and within-cluster variance
for different methods. Models with local time-warping
and global time-shifting produce systematically higher



Figure 9: A sample of cyclone trajectories over the
North Atlantic.
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Figure 10: Cross-validated logP scores on the cyclone
data.

logP scores and lead to reductions of about 25% in
within-cluster variance.

Figure 7 shows a typical (most probable) alignment of
an observed curve with a learned cluster mean. Fig-
ure 8 shows two of the clusters recovered by the joint
clustering and alignment model (top plots), and the
most similar cluster learned by a standard Gaussian
mixture model from this dataset (lower plots). We see
clearly that time warping greatly reduces the within-
cluster variance and extracts more structure from the
data, such as sharper peaks and valleys in the cluster
waveforms.

4.2 Cyclone Clustering

We also applied our methodology to clustering of
extra-tropical cyclone trajectories. The observed curve
data consists of 614 multidimensional curves (D = 3),
each curve consisting of x, y lat-lon pairs and sea-level
pressure intensities (as in Figure 1), corresponding to
the estimated minima of the cyclones. Measurements
are every six hours from the estimated beginning to
the estimated end of a storm, and detected storms
typically have lengths from 3 to 6 days (12 to 24
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Figure 11: Mean within-cluster variance on the cyclone
data.

time points). Details on detection and tracking algo-
rithms are provided in Blender, Fraedrich, and Lunkeit
(1997). Figure 9 shows the superposition of a set of
such trajectories, estimated from data over 15 winters.
Atmospheric scientists are interested in understand-
ing whether the cyclones can be grouped into natural
clusters. The distribution of cyclone paths and inten-
sities as a function of long-term climate variation is
of particular interest, for example, understanding how
the probability of extreme storms over western Eu-
rope may vary as a function of climate change. In this
context, even relatively simple probabilistic modeling
and clustering can be quite valuable as a means to ex-
plore the rather complex curve data shown in Figure 9
(Gaffney & Smyth, 2003). Prior work in atmospheric
science on this problem has typically converted the tra-
jectory data into a vector space (by forcing all cyclones
to be of the same length in time) and then using algo-
rithms such as K-means for clustering (Blender et al.,
1997).

Figure 10 shows a plot of cross validated logP scores as
a function of the number of clusters K for 4 different
methods from our framework: (1) Gaussian mixtures
as for the ECG experiments but where all cyclones
are spatially shifted a priori to start at x = 0, y = 0,
(2) a model with global shifting but no local time-
warping, (3) the reverse of method (2), and (4) both
global time-shifting and local time warping. The max-
imum shift allowed is M = 9 and for computational
reasons we limited the maximum number of skips S in
the local time-warping model to 1 skip (Figure 4). We
see that the more complex models (including global
shifting, then local time-warping, then both) lead to
systematic improvements in out-of-sample logP scores
across all K values. For example, the models that al-
low both time warping and shifts have higher scores
at K = 3 than conventional Gaussian mixtures with
K = 8. Figure 11 shows the same type of plot for the
mean within-cluster variance. Again the model with



both local time-warping and global shifts systemat-
ically produces the lowest within-cluster variance, on
the order of 50% reduction compared to Gaussian mix-
tures (in agreement with the visual evidence in Figure
8 for the ECG data).

5 Conclusions

In this paper we addressed the general problem of clus-
tering multi-dimensional curve data where we allow
for local and global translations in the independent
variable (typically time) and global offsets in the mea-
surement variables. We proposed a general mixture
model framework for this problem and demonstrated
on two real-world data sets that the methodology sys-
tematically leads to lower variance clusters in-sample,
and better predictions in terms of density estimation
out-of-sample. We also argue that the methodology
leads to more interpretable clusters which is often im-
portant from a scientific viewpoint. Space limitations
prevented a full discussion of many other aspects of
this problem. For example, it is quite easy to allow for
multiplicative amplitude scaling using this same mix-
ture framework and our experiments to date indicate
that it also leads to systematically better clustering
results. Bayesian estimation of the deformation pa-
rameters (e.g., via priors on the parameterized skip
lengths and shifts in time) is also feasible and likely to
be useful in practice.
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