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Abstract

We consider the problem of modeling
discrete-valued vector time series data us-
ing extensions of Chow-Liu tree models to
capture both dependencies across time and
dependencies across variables. Conditional
Chow-Liu tree models are introduced, as an
extension to standard Chow-Liu trees, for
modeling conditional rather than joint den-
sities. We describe learning algorithms for
such models and show how they can be used
to learn parsimonious representations for the
output distributions in hidden Markov mod-
els. These models are applied to the impor-
tant problem of simulating and forecasting
daily precipitation occurrence for networks of
rain stations. To demonstrate the effective-
ness of the models, we compare their perfor-
mance versus a number of alternatives using
historical precipitation data from Southwest-
ern Australia and the Western United States.
We illustrate how the structure and param-
eters of the models can be used to provide
an improved meteorological interpretation of
such data.

1 Introduction

In this paper we consider the problem of model-
ing discrete-time, discrete-valued, multivariate time-
series. For example, consider M time-series where each
time-series can take B values. The motivating appli-
cation in this paper is modeling of daily binary rainfall
data (B = 2) for regional spatial networks of M sta-
tions (where typically M can vary from 10 to 100).
Modeling and prediction of rainfall is an important
problem in the atmospheric sciences. A common appli-
cation, for example, is simulating realistic daily rain-
fall patterns for a 90-day season, to be used as input

for detailed crop-modeling simulations. A number of
statistical methods have been developed for modeling
daily rainfall time-series at single stations—first-order
Markov models and various extensions (also known as
“weather generators”) have proven quite effective for
single-station rainfall modeling in many geographic re-
gions. However, there has been less success in devel-
oping models for multiple stations that can generate
simulations with realistic spatial and temporal corre-
lations in rainfall patterns (Wilks and Wilby 1999).

Direct modeling of the dependence of the M daily ob-
servations at time t on the M observations at time
t− 1 requires an exponential number of parameters in
M . This is clearly impractical for most values of M
of interest. In this paper we look at the use of hid-
den Markov models (HMMs) to avoid this problem—
an HMM uses a K-valued hidden first-order Markov
chain to model time-dependence, with the M outputs
at time t being conditionally independent of everything
else given the current state value at time t. The hid-
den state variable in an HMM serves to capture tempo-
ral dependence in a low-dimensional manner, i.e., with
O(K2) parameters instead of being exponential in M .
From a scientific viewpoint, an attractive feature of
the HMM is that the hidden states can be interpreted
as underlying “weather states” (Hughes et al. 1999,
Robertson et al. to appear).

Modeling the instantaneous multivariate dependence
of the M observations on the state at time t would
require BM parameters per state if the full joint dis-
tribution were modeled. This in turn would defeat the
purpose of using the HMM to reduce the number of
parameters. Thus, approximations such as assuming
conditional independence (CI) of the M observations
are often used in practice (e.g., Hughes et al. 1999),
requiring O(KMB) parameters.

While the HMM-CI approach is a useful starting point
it suffers from two well-known disadvantages for an
application such as rainfall modeling: (1) the assumed
conditional independence of the M outputs on each



other at time t can lead to inadequate characterization
of the dependence between the M time-series (e.g.,
unrealistic spatial rainfall patterns on a given day),
(2) the assumed conditional independence of the M
outputs at time t from from the M outputs at time
t − 1 can lead to inadequate temporal dependence in
the M time-series (e.g., unrealistic occurrences of wet
days during dry spells).

In this paper we investigate Chow-Liu tree structures
in the context of providing improved, yet tractable,
models to address these problems in capturing out-
put dependencies for HMMs. We show how Chow-
Liu trees can be used to directly capture dependency
among the M outputs in multivariate HMMs. We also
introduce an extension called conditional Chow-Liu
trees to provide a class of dependency models that are
well-suited for modeling multivariate time-series data.
We illustrate the application of the proposed methods
to two large-scale precipitation data sets.

The paper is structured as follows. Section 2 formally
describes existing models and our extensions. Section
3 describes how to perform inference and to learn both
the structure and parameters for the models. Section 4
describes an application and analyzes the performance
of the models. Finally, Section 5 summarizes our con-
tributions and outlines possible future directions.

2 Model Description

We begin this section by briefly reviewing Chow-Liu
trees for multivariate data before introducing the con-
ditional Chow-Liu tree model. We then focus on vector
time-series data and show how the conditional Chow-
Liu tree model and hidden Markov models can be com-
bined.

2.1 Chow-Liu Trees

Chow and Liu (1968) proposed a method for approxi-
mating the joint distribution of a set of discrete vari-
ables using products of distributions involving no more
than pairs of variables. If P (x) is an M -variate dis-
tribution on discrete variables V =

(
x1, . . . , xM

)
, the

Chow-Liu method constructs a distribution T (x) for
which the corresponding Bayesian and Markov net-
work is tree-structured. If GT = (V,ET ) is the Markov
network associated with T , then

T (x) =

∏
(u,v)∈ET

T (xu, xv)∏
v∈V T (xv)degree(v)

=
∏

(u,v)∈ET

T (xu, xv)
T (xv) T (xu)

∏
v∈V

T (xv) . (1)

The Kullback-Leibler divergence KL (P, T ) between

Algorithm ChowLiu(P )
Inputs: Distribution P over domain V ; procedure
MWST( weights ) that outputs a maximum weight
spanning tree over V

1. Compute marginal distributions P (xu, xv)
and P (xu) ∀u, v ∈ V

2. Compute mutual information values
I (xu, xv) ∀u, v ∈ V

3. ET = MWST ({I (xu, xv)})

4. Set T (xu, xv) = P (xu, xv) ∀ (u, v) ∈ ET

Output: T

Figure 1: Chow-Liu algorithm (very similar to Meilă
and Jordan 2000)

distributions P and T is defined as

KL (P, T ) =
∑
x

P (x) log
P (x)
T (x)

.

Chow and Liu showed that in order to minimize
KL (P, T ) the edges for the tree ET have to be se-
lected to maximize the total mutual information of the
edges

∑
(u,v)∈ET

I (xu, xv) where mutual information
between variables xu and xv is defined as

I (xu, xv) =
∑
xu

∑
xv

P (xu, xv) log
P (xu, xv)

P (xu) P (xv)
. (2)

This can be accomplished by calculating mutual infor-
mation I (xu, xv) for all possible pairs of variables in
V , and then solving the maximum spanning tree prob-
lem, with pairwise mutual information from Equation
2 as edge weights (e.g., Cormen et al. 1990). Once the
edges are selected, the probability distribution T on
the pairs of vertices connected by edges is defined to
be the same as P :

∀ (xu, xv) ∈ ET T (xu, xv) = P (xu, xv) ,

and the resulting distribution T minimizes KL (P, T ).
Figure 1 outlines the algorithm for finding T .

If each of the variables in V takes on B values, finding
the tree T has complexity O

(
M2B2

)
for the mutual

information calculations and O
(
M2
)

for finding the
minimum spanning tree, totaling O

(
M2B2

)
. (Meilă

(1999) proposed a faster version of the Chow-Liu al-
gorithm for sparse high-dimensional data.) In prac-
tice, P is often an empirical distribution on the data,
so that the calculation of pairwise counts of variables
(used in calculating mutual information) has complex-
ity O

(
TM2B2

)
where T is the number of vectors in

the data.



The advantages of Chow-Liu trees include (a) the ex-
istence of a simple algorithm for finding the optimal
tree, (b) the parsimonious nature of the model (the
number of parameters is linear in the dimensionality
of the space), and (c) the tree structure T can have a
simple intuitive interpretation. While there are other
algorithms that retain the idea of a tree-structured dis-
tribution, while allowing for more complex dependen-
cies (e.g., thin junction trees, Bach and Jordan 2002),
these algorithms have higher time complexity than the
original Chow-Liu algorithm and do not guarantee op-
timality within the model class for the structure that
is learned. Thus, in the results in this paper we focus
on Chow-Liu trees under the assumption that they are
a generally useful modeling technique.

2.2 Conditional Chow-Liu Forests

It is common in practice (e.g., in time-series and in re-
gression modeling) that the data to be modeled can be
viewed as consisting of two sets of variables, where we
wish to model the conditional distribution P (x|y) of
one set x on the other set y. We propose an extension
of the Chow-Liu method to model such conditional
distributions. As with Chow-Liu trees, we want the
corresponding probability distribution to be factored
into a product of distributions involving no more than
two variables. Pairs of variables are represented as an
edge in a corresponding graph with nodes correspond-
ing to variables in V = Vx ∪ Vy. However, since all of
the variables in Vy are observed, we are not interested
in modeling P (y), and do not wish to restrict P (y) by
making independence assumptions about the variables
in Vy. The structure for an approximation distribution
T will be constructed by adding edges such as not to
introduce paths involving multiple variables from Vy.

Let GF = (V,EF ) be a forest, a collection of disjoint
trees, containing edges Ex between pairs of variables
in Vx and edges Ey connecting variables from Vx and
Vy, EF = Ex ∪ Ey. If the probability distribution
T (x|y) has GF for a Markov network, then similar to
Equation 1:

T (x|y) =
∏

(u,v)∈Ex

T (xu, xv)
T (xu) T (xv)

∏
v∈Vx

T (xv)

×
∏

(u,v)∈Ey

T (yu, xv)
T (yu) T (xv)

.

We will again use KL-divergence between conditional
distributions P and T as an objective function:

KL (P, T ) =
∑
y

P (y)
∑
x

P (x|y) log
P (x|y)
T (x|y)

.

It can be shown that the optimal probability distribu-

Algorithm CondChowLiu(P )
Inputs: Distribution P over domain Vx ∪ Vy; pro-
cedure MWST( V , weights ) that outputs a maxi-
mum weight spanning tree over V

1. (a) Compute marginal distributions
P (xu, xv) and P (xu) ∀u, v ∈ Vx

(b) Compute marginal distributions P (yu)
and P (yu, xv) ∀u ∈ Vy, v ∈ Vx

2. (a) Compute mutual information values
I (xu, xv) ∀u, v ∈ Vx

(b) Compute mutual information values
I (yu, xv) ∀u ∈ Vy, v ∈ Vx

(c) Find u (v) = argmaxu∈Vy
I (yu, xv) ∀v ∈

Vx

(d) Let V ′ = Vx ∪ {v′}, and set I
(
xv′ , xv

)
=

I
(
yu(v), xv

)
∀v ∈ Vx

3. (a) ET ′ = MWST (V ′, I)
(b) Ex = {(u, v) |u, v ∈ Vx, (u, v) ∈ ET ′}
(c) Ey = {(u (v) , v) |v ∈ Vx, (v, v′) ∈ ET ′}.

4. (a) Set T (xu, xv) = P (xu, xv) ∀ (u, v) ∈ Ex

(b) Set T (yu, xv) = P (yu, xv) ∀ (u, v) ∈ Ey

Output: T

Figure 2: Conditional Chow-Liu algorithm

tion T with corresponding Markov network GF is

∀ (u, v) ∈ Ex, T (xu, xv) = P (xu, xv)

and

∀ (u, v) ∈ Ey, T (yu, xv) = P (yu, xv) .

As with the unconditional distribution, we wish to find
pairs of variables to minimize

KL (P, T ) =
∑
v∈Vx

H [xv]−H [x|y]

−
∑

(u,v)∈Ex

I (xu, xv)−
∑

(u,v)∈Ey

I (yu, xv)

where H [xv] denotes the entropy of P (xv), and
H [x|y] denotes the conditional entropy of P (x|y).
Both H [x] and H [x|y] are independent of EF , so as in
the unconditional case, we need to solve a maximum
spanning tree problem on the graph with nodes Vy∪Vx

while not allowing paths between vertices in Vy (alter-
natively, assuming all nodes in Vy are connected).

The algorithm for learning the conditional Chow-Liu
(CCL) distribution is shown in Figure 2. Due to the re-
strictions on the edges, the CCL networks can contain
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Figure 4: Graphical model for a hypothetical CCLF

disconnected tree components (referred to as forests).
These CCL forests can consist of 1 to min {|Vy| , |Vx|}
components. (See Figure 3 for an illustration.)

2.2.1 Chain CL Forests

We now return to our original goal of modeling time-
dependent data. Let Rt =

(
R1

t , . . . , R
M
t

)
be a multi-

variate (M -variate) random vector of data with each
component taking on values {0, . . . , B − 1}. By R1:T

we will denote observation sequences of length T .

A simple model for such data can be constructed using
conditional Chow-Liu forests. For this chain Chow-Liu
forest model (CCLF), the data for a time point t is
modeled as a conditional Chow-Liu forest given data
at point t− 1 (Figure 4):

P (R1:T ) =
T∏

t=1

T (Rt|Rt−1)

where

T (Rt = r|Rt−1 = r′) =

=
∏

(u,v)∈EV

T (Ru
t = ru, Rv

t = rv)
T (Rv

t = rv) T (Ru
t = ru)

∏
v∈Rt

T (Rv
t = rv)

×
∏

(u,v)∈EIi

T
(
Rv

t = rv|Ru
t−1 = r′u

)
T (Rv

t = rv)
.

Note that learning the structure and parameters of
CCLF requires one pass through the data to collect the

counts and calculate joint probabilities of the pairs of
variables, and only one run of the CondChowLiu tree
algorithm.

2.3 Hidden Markov Models

An alternative approach to modeling R1:T is to use a
hidden-state model to capture temporal dependence.
Let St be the hidden state for observation t, taking
on one of K values from 1 to K, where S1:T denotes
sequences of length T of hidden states.

A first-order HMM makes two conditional indepen-
dence assumptions. The first assumption is that the
hidden state process, S1:T , is first-order Markov:

P (St|S1:t−1) = P (St|St−1) (3)

and that this first-order Markov process is homoge-
neous in time, i.e., the K × K transition probability
matrix for Equation 3 does not change with time.

The second assumption is that each vector Rt at time
t is independent of all other observed and unobserved
states up to time t, conditional on the hidden state St

at time t , i.e.,

P (Rt|S1:t,R1:t−1) = P (Rt|St) . (4)

Specifying a full joint distribution P (Rt|St) would re-
quire O(BM ) joint probabilities per state, which is
clearly impractical even for moderate values of M . In
practice, to avoid this problem, simpler models are
often used, such as assuming that each vector com-
ponent Rj

t is conditionally independent (CI) of the
other components, given the state St, i.e., P (Rt|St) =
P (R1

t , . . . , R
M
t |St) =

∏M
j=1 P (Rj

t |St). We will use this
HMM-CI as our baseline model in the experimental re-
sults section later in the paper—in what follows below
we explore models that can capture more dependence
structure by using CL-trees.

2.4 Chow-Liu Structures and HMMs

We can use HMMs with Chow-Liu trees or conditional
Chow-Liu forests to model the output variable given
the hidden state. HMMs can model temporal struc-
ture of the data while the Chow-Liu models can cap-
ture “instantaneous” dependencies between multivari-
ate outputs as well as additional dependence between
vector components at consecutive observations over
time that the state variable does not capture.

By combining HMMs with the Chow-Liu tree model
and with the conditional Chow-Liu forest model we
obtain HMM-CL and HMM-CCL models, respectively.
The set of parameters Θ for these models with K hid-
den states and B-valued M -variate vector sets consists
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Figure 5: Graphical model interpretation of a hypothetical HMM-CL (left) and HMM-CCL (right)

of a K ×K transition matrix Γ, a K × 1 vector Π of
probabilities for the first hidden state in a sequence,
and Chow-Liu trees or conditional forests for each hid-
den state T = {T1, . . . , TK}. Examples of graphical
model structures for both the HMM-CL and HMM-
CCL are shown in Figure 5. The likelihood of Θ can
then be computed as

L (Θ) = P (R1:T |Θ) =
∑
S1:T

P (S1:T ,R1:T |Θ)

=
∑
S1:T

P (S1|Θ)
T∏

t=2

P (St|St−1,Θ)

×
T∏

t=1

P (Rt|St,Rt−1,Θ)

=
K∑

i1=1

πi1Ti1 (R1)
T∑

t=2

K∑
it=1

γit−1itTit (Rt|Rt−1)

with P (Rt|St,Rt−1,Θ) = P (Rt|St,Θ) and
Ti (Rt|Rt−1) = Ti (Rt) for the HMM-CL.

For the value for the hidden state St−1 = i, the proba-
bility distribution P (Rt|Θ) is just a mixture of Chow-
Liu trees (Meilă and Jordan 2000) with mixture coef-
ficients (γi1, . . . , γiK) equal to the i-th row of the tran-
sition matrix Γ.

As a side note, since the output part of the HMM-CCL
contains dependencies on observations at the previous
time-step, the model can be viewed as a form of au-
toregressive HMM (Rabiner 1989).

3 Inference and Learning of
HMM-based Models

In this section we discuss both (a) learning the struc-
ture and the parameters of the HMM-CL and HMM-

CCL models discussed above, and (b) inferring proba-
bility distributions of the hidden states for given a set
of observations and a model structure and its param-
eters. We outline how these operations can be per-
formed for the HMM-CL and HMM-CCL. For full de-
tails, see Kirshner et al. (2004).

3.1 Inference of the Hidden State
Distribution

The probability of the hidden variables S1:T given
complete observations R1:T can be computed as

P (S1:T |R1:T ) =
P (S1:T ,R1:T )∑

S1:T
P (S1:T ,R1:T )

.

The likelihood (denominator) cannot be calculated
directly since the sum is exponential in T . How-
ever, the well-known recursive Forward-Backward pro-
cedure can be used to collect the necessary informa-
tion in O

(
TK2M

)
without exponential complexity

(e.g., Rabiner 1989). Since the Forward-Backward al-
gorithm for HMM-CLs and HMM-CCLs is not very
different from standard HMMs, we will omit the de-
tails.

3.2 Learning

Learning in HMMs is typically performed using the
Baum-Welch algorithm (Baum et al. 1970), a vari-
ant of the Expectation-Maximization (EM) algorithm
(Dempster et al. 1977). Each iteration of EM consists
of two steps. First (E-step), the estimation of the pos-
terior distribution of latent variables is accomplished
by the Forward-Backward routine. Second (M-step),
the parameters of the models are updated to maximize
the expected log-likelihood of the model given the dis-
tribution from the M-step. The structures of the trees



are also updated in the M-step.

The parameters Π and Γ are calculated in the same
manner as for regular HMMs. Updates for T1, . . . , TK

are computed in a manner similar to that for mixtures
of trees (Meilă and Jordan 2000). Suppose R1:T =
r1:T . Let T ′

i denote the Chow-Liu tree for St = i under
the updated model. It can be shown (Kirshner et al.
2004) that to improve the log-likelihood one needs to
maximize

K∑
i=1

(
T∑

τ=1

P (Sτ = i|R1:T = r1:T )

)
T∑

t=1

Pi (rt) log T ′
i (rt)

where Pi (rt) = P (St=i|R1:T =r1:T )∑T
τ=1 P (Sτ=i|R1:T =r1:T )

. This can be
accomplished by separately learning Chow-Liu struc-
tures for the distributions Pi, the normalized posterior
distributions of the hidden states calculated in the E-
step. The time complexity for each iteration is then
O
(
TK2M

)
for the E-step and O

(
TK2 + KTM2B2

)
for the M-step.

4 Experimental Results

To demonstrate the application of the HMM-CL and
HMM-CCL models, we consider the problem of mod-
eling precipitation occurrences for a network of rain
stations. The data we examine here consists of bi-
nary measurements (indicating precipitation or not)
recorded each day over a number of years for each of
a set of rain stations in a local region. Figure 6 shows
a network of such stations in Southwestern Australia.

The goal is to build models that broadly speaking cap-
ture both the temporal and spatial properties of the
precipitation data. These models can then be used to
simulate realistic rainfall patterns over seasons (e.g.,
90-day sequences), as a basis for making seasonal fore-
casts (Robertson et al. to appear), and to fill in missing
rain station reports in the historical record.

Markov chains provide a well-known benchmark for
modeling precipitation time-series at individual sta-
tions (e.g., Wilks and Wilby 1999). However, it is non-
trivial to couple multiple chains together so that they
exhibit realistic spatial correlation in simulated rain-
fall patterns. We also compare against the simplest
HMM with a conditional independence (CI) assump-
tion for the rain stations given the state. This model
captures the marginal dependence of the stations to a
certain degree since (for example) in a “wet state” the
probability for all stations to be wet is higher, and so
forth. However, the CI assumption clearly does not
fully capture the spatial dependence, motivating the
use of models such as HMM-CL and HMM-CCL.

In the experiments below we use data from both

115 116 117 118 119
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Figure 6: Stations in the Southwestern Australia re-
gion. Circle radii indicate marginal probabilities of
rainfall (> 0.3mm) at each location.

Southwestern Australia (30 stations, 15 184-day win-
ter seasons beginning May 1) and the Western United
States (8 stations, 39 90-day seasons beginning De-
cember 1). In fitting HMMs to this type of precip-
itation data the resulting “weather states” are often
of direct scientific interest from a meteorological view-
point. Thus, in evaluating these models, models that
can explain the data with fewer states are generally
preferable.

We use leave-one-out cross-validation to evaluate the
fit of the models to the data. For evaluation we use
two different criteria. We compute the log-likelihood
for seasons not in the training data, normalized by the
number of binary events in the left-out sets (referred to
here as out-of-sample scaled log-likelihood). We also
compute the average classification error in predicting
observed randomly-selected station readings that are
deliberately removed from the training data and then
predicted by the model. The models considered are the
independent Markov chains model (or “weather gen-
erator” model), the chain Chow-Liu forest model, the
HMM with conditional independence (HMM-CI), the
HMM with Chow-Liu tree emissions (HMM-CL), and
the HMM with conditional Chow-Liu tree emissions
(HMM-CCL). For HMMs, K is chosen corresponding
to the largest out-of-sample scaled log-likelihood for
each model—the smallest such K is then used across
different HMM types for comparison.

The scatter plots in Figures 7 and 8 show the out-
of-sample scaled log-likelihoods and classification er-
rors for the models on the left-out sets. The y-axis
is the performance of the HMM-CCL model, and the
x-axis represents the performance of the other models
(shown with different symbols). Higher implies better
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diction error (right) obtained by leave-one-winter-out cross-validation. The line corresponds to y = x. The inde-
pendent chains model is not shown since it is beyond the range of the plot (average ll = −0.6034, average error =
0.291).
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Figure 8: Western U.S. data: Scatterplots of out-of-sample scaled log-likelihoods (left) and average prediction
error (right) obtained by leave-one-winter-out cross-validation. The line corresponds to y = x. The independent
chains model is not shown since it is beyond the range of the plot (average ll = −0.5204, average error = 0.221).
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Figure 9: Graphical interpretation of the hidden states for a 5-state HMM-CL trained on Southwestern Australia
data (4 out of 5 shown). Radii of the circles indicate the precipitation probability for each station given the state.
Lines between the stations indicate the edges in the graph while different types of lines indicate the strength of
mutual information of the edges.



performance for log-likelihood (on the left) and worse
for error (on the right). The HMM-CL and HMM-
CCL models are systematically better than the CCLF
and HMM-CI models, for both score functions, and for
both data sets. The HMM-CCL model does relatively
better than the HMM-CL model on the U. S. data.
This is explained by the fact that the Australian sta-
tions are much closer spatially than the U.S. stations,
so that for the U.S. the temporal connections that the
HMM-CCL adds are more useful than the spatial con-
nections that the HMM-CL model is limited to.

Examples of the Chow-Liu tree structures learned by
the model are shown in Figure 9 for the 5-state HMM-
CL model trained on all 15 years of Southwestern Aus-
tralia data. The states learned by the model corre-
spond to a variety of wet and dry spatial patterns.
The tree structures are consistent with the meteorol-
ogy and topography of the region (Hughes et al. 1999).
Winter rainfall over SW Australia is large-scale and
frontal, impacting the southwest corner of the domain
first and foremost. Hence, the tendency for correla-
tions between stations along the coast during moder-
ately wet weather states. Interesting correlation struc-
tures are also identified in the north of the domain even
during dry conditions.

5 Conclusions

We have investigated a number of approaches for mod-
eling multivariate discrete-valued time series. In par-
ticular we illustrated how Chow-Liu trees could be em-
bedded within hidden Markov models to provide im-
proved temporal and multivariate dependence model-
ing in a tractable and parsimonious manner. We also
introduced the conditional Chow-Liu forest model, a
natural extension of Chow-Liu trees for modeling con-
ditional distributions such as multivariate data with
temporal dependencies. Experimental results on real-
world precipitation data indicate that these models
provide systematic improvements over simpler alter-
natives such as assuming conditional independence of
the multivariate outputs. There are a number of ex-
tensions that were not discussed in this paper but
that can clearly be pursued, including (a) using in-
formative priors over tree-structures (e.g., priors on
edges based on distance and topography for precipi-
tation station models), (b) models for real-valued or
mixed data (e.g., modeling precipitation amounts as
well as occurrences), (c) adding input variables to the
HMMs (e.g., to model “forcing” effects from atmo-
spheric measurements—for initial results see Robert-
son et al. (to appear)), and (d) performing systematic
experiments comparing these models to more general
classes of dynamic Bayesian networks where temporal
and multivariate structure is learned directly.
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