
Model-Based Clustering and Visualization of Navigation

Patterns on a Web Site

Igor V. Cadez∗, igor cadez@sparta.com

David Heckerman†, heckerma@microsoft.com
Christopher Meek†, meek@microsoft.com
Padhraic Smyth‡, smyth@ics.uci.edu

Steven White†, stevewh@microsoft.com

Abstract

We present a new methodology for exploring and analyzing navigation patterns on a web
site. The patterns that can be analyzed consist of sequences of URL categories traversed
by users. In our approach, we first partition site users into clusters such that users
with similar navigation paths through the site are placed into the same cluster. Then,
for each cluster, we display these paths for users within that cluster. The clustering
approach we employ is model-based (as opposed to distance-based) and partitions users
according to the order in which they request web pages. In particular, we cluster users
by learning a mixture of first-order Markov models using the Expectation-Maximization
algorithm. The runtime of our algorithm scales linearly with the number of clusters and
with the size of the data; and our implementation easily handles hundreds of thousands
of user sessions in memory. In the paper, we describe the details of our method and a
visualization tool based on it called WebCANVAS. We illustrate the use of our approach
on user-traffic data from msnbc.com.

Keywords: Model-based clustering, sequence clustering, data visualization, Internet, web

1 Introduction

Arguably one of the great challenges for computer science in the coming century will be the
understanding of human behavior in the context of “digital environments” such as the web.
Given our limited experience to date with modeling such environments, there are relatively
few existing theories or first-principles to guide any analysis or modeling endeavors. On the
other hand, one can readily obtain vast quantities of data from such environments. In this

∗Sparta Inc., 23382 Mill Creek Drive, #100 Laguna Hills, CA 92653
†Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399
‡School of Information and Computer Science, University of California, Irvine, CA 92697-3435

1

User Sequence
1 frontpage news travel travel

2 news news news news news

3 frontpage news frontpage news frontpage

4 news news

5 frontpage news news travel travel travel

6 news weather weather weather weather

7 news health health business business business

8 frontpage sports sports sports weather

9 weather

Figure 1: A sample of user sequences.

context, data-driven exploration of digital traces—such as web-server logs—is certainly an
important starting point for furthering our understanding of “digital behavior.”

In this paper, we describe a novel approach to visualization and exploratory analysis of
dynamic behavior of individuals visiting a particular web site. As a test bed for our work
we use web-server logs of individual browsing records for many thousands of individuals or
users at the msnbc.com site. Our approach is straightforward. First, we partition users into
clusters such that users with similar behavior on the site are placed into the same cluster.
Then, for each cluster, we display the behaviors of the users within that cluster.

The focus of our paper is on the clustering and visualization aspects of such data, rather
than on the various engineering issues involved in preprocessing server-log data (identifi-
cation, “sessionization,” etc.). At this point, it is sufficient to assume a fairly abstract
characterization of the data—that is, (a) the server-log files have been converted into a
set of sequences, one sequence for each user session, (b) each sequence is represented as an
ordered list of discrete symbols, and (c) each symbol represents one of several possible cat-
egories of web pages requested by the user. These categories correspond to sets of Uniform
Resource Locators (URLs) on the site. Figure 1 shows a sample of such sequences. The
web-servers from msnbc.com for a twenty-four-hour period typically produces roughly one
million such sequences.

There are a number of aspects of the data which make the problem non-trivial. First,
the information is inherently dynamic. Models and displays based on static information
(such as histograms of pages requested) will not fully capture the dynamic nature of the
underlying web-surfing behavior. Thus, we investigate relatively simple Markov models to
represent dynamic behavior. An important point in this context is that these dynamic
models serve primarily as vehicles for data exploration and we do not assume that the
models necessarily represent the true data-generating process.

Second, dynamic behavior in this general context is highly likely to be quite hetero-
geneous. A population of users of this size will tend to have vastly different web-surfing

2

patterns in terms of (e.g.) the duration of a session and the content visited during a session.
To address this heterogeneity, we imagine that different users lie in different clusters, where
each cluster has a different Markov model. Specifically, we model the data as having been
generated in the following fashion: (1) A user arrives at the web site and is assigned to a
particular cluster with some probability, and (2) the behavior of that user is then gener-
ated from a Markov model with parameters specific to that cluster. We pretend this model
generates the web data we observe, and that we only see the user behaviors and not the
actual cluster assignments. We then use a standard learning technique, the Expectation–
Maximization (EM) algorithm, to learn the proportion of users assigned to each cluster
as well as the parameters of each Markov model. In so doing, we assign each user to a
cluster or fractionally to the set of clusters. This approach to clustering is sometimes called
a model-based (or mixture model) approach, and lies in contrast with the commonly used
distance-based approaches. The clustering model we use is a finite mixture of Markov mod-
els. By using a model-based approach to clustering, sequences of different lengths may be
assigned to the same cluster (e.g., sequence 1 and 5 in Figure 1 may very likely be generated
from a single model corresponding to one of the clusters). This approach provides a natural
and consistent mechanism for handling the problem of modeling and clustering sequences
of different lengths. Full details of the model and the associated clustering algorithm are
discussed in Section 2.

The third non-trivial aspect of the data is its size. Thus, it is critical that any algorithmic
technique scale in a reasonable fashion—for example, linear or near-linear in the number of
clusters K, the number of sequences N , and the average number of category requests per
sequence L. This requirement rules out—for example—any direct application of standard
hierarchical clustering techniques that scale as O(N2) in both time and space complexity.
An example of such an approach would be agglomerative clustering using (e.g.) some
form of pair-wise edit-distance between sequences. In contrast, our algorithm for learning
clusters of Markov chains (the EM algorithm) has a runtime per iteration that is O(KNL+
KM2), where M is the number of different page categories that can be requested by a
user. This complexity typically reduces to O(KNL) for web data where M is relatively
small. In Section 2.4, we investigate the overall runtime of our approach, and demonstrate
by experiment that the total runtime of the algorithm (over all iterations) scales linearly in
both N and K.

The paper proceeds as follows. Section 2 provides a detailed account of the under-
lying mixture model and the associated EM clustering algorithm, including experimental
results on out-of-sample predictions comparing the quality of the Markov models with more
traditional histogram approaches. In this section we also analyze the scalability of the over-
all clustering approach, using experimental results to validate the (often assumed) near-
linearity of EM-based algorithms. In Section 3, we illustrate how the Markov clustering
approach can be leveraged to support an interactive exploratory data analysis tool called
WebCANVAS that provides direct insight into the heterogeneous and dynamic nature of this
type of web data. Section 4 discusses why mixtures of Markov models are a useful model for

3

navigation of categorized Web pages, even though non-mixture first-order Markov models
can be a poor model for navigation of uncategorized (“raw”) Web pages. Section 5 briefly
summarizes related work, and Section 6 concludes the paper with a summary and possible
extensions of this work.

The primary novel contributions of this paper lie in (1) the introduction and evaluation
of mixtures of Markov models for clustering and modeling of web navigation data, and (2)
the use of the resulting clusters as the basis for interactive exploration and visualization of
massive web logs.

2 Clustering Methods

In this section, we provide details of our clustering approach. For reasons discussed in the
introduction, we concentrate on the model-based approach.

2.1 Model-Based Clustering

In the model-based approach to clustering, we assume that our data is generated as follows:

1. A user arrives at the web site and is assigned to one of K clusters with some probability,
and

2. Given that a user is in a cluster, his or her behavior is generated from some statistical
model specific to that cluster.

We assume that the data from different users are generated independently given the model
(the traditional i.i.d. assumption). Statisticians refer to such a model as a mixture model
with K components. Initially, of course, we do not have the model; we have only the data.
Nonetheless, we can apply standard statistical techniques to our data to learn our model—
namely, (1) the number of components, (2) the probability distribution used to assign users
to the various clusters, and (3) the parameters of each model component. Once the model
is learned, we can use it to assign each user to a cluster or fractionally to the set of clusters.

To describe the mixture model more formally, we need some notation. We denote a
variable by a capitalized token (e.g., X, Xi), and the state or value of a corresponding
variable by that same token in lower case (e.g., x, xi). We denote a set of variables by
a bold-face capitalized token (e.g., X,Xi). We use a corresponding bold-face lower-case
token (e.g., x,xi) to denote an assignment of state or value to each variable in a given set.
We use p(x|y) to denote the probability that X = x given Y = y. We also use p(x|y) to
denote a probability distribution for X given Y . Whether p(x|y) refers to a probability or
a probability distribution will be clear from context.

Now, let X be a multivariate random variable taking on values corresponding to the
behavior of individual users. Let C be a discrete-valued variable taking on values c1, . . . , cK .
The value of C corresponds to the unknown cluster assignment for a user. A mixture model

4

for X with K components has the form:

p(x|θ) =
K∑

k=1

p(ck|θ) pk(x|ck, θ) (1)

where p(ck|θ) is the marginal probability of the kth cluster (
∑

k p(ck|θ) = 1), pk(x|ck, θ) is
the statistical model describing the distribution for the variables for users in the kth cluster,
and θ denotes the parameters of the model.

For the work described in this paper, we consider the special case where X = (X1, . . . , XL)
is an arbitrarily long sequence of variables describing the user’s path through the site. The
variable Xi takes on some value xi from among the M possible page categories that the
user could have requested. Thus, for example, the sequence (x1, x2, . . . , xL) indicates that
the user first requests x1, then x2, and so on. Note that, in our analysis, xL is always the
“end” state, which indicates that no additional pages were requested.

In our main approach to modeling this data, we assume that each model component is
a first-order Markov model:

pk(x|ck, θ) = p(x1|θI
k)

L∏
i=2

p(xi|xi−1, θ
T
k).

where θI
k denotes the parameters of the probability distribution over the initial page-category

request among users in cluster k, and θT
k denotes the parameters of the probability distri-

butions over transitions from one category to the next by a user in cluster k. This model
captures (to some degree) the order of the user’s requests. Specifically, it captures the
user’s initial request, the dependency between two consecutive requests, and—by virtue of
the inclusion of the end state—the last category requested. In our work, each variable Xi

is finite, p(x1|θI
k) is a multinomial distribution, and p(xi|xi−1, θ

T
k) is a set of multinomial

distributions.
There are many variations of this simple model. For example, using higher order Markov

models for each component, we can capture dependencies beyond those in consecutive re-
quests. As we shall discuss in Section 4, this extension appears to be unnecessary for
modeling user traffic on msnbc.com.

Another variation of this model is the zeroth-order Markov model (also called a unigram
model):

pk(x|ck, θ) =
L∏

i=1

p(xi|θM
k).

where θM
k denotes the parameters of the marginal distribution over category requests for

a user in cluster k. Again, p(xi|θM
k) is a multinomial distribution. This variation is useful

when the site administrator does not care about the order in which the requests are made.
We note that, by using a model-based approach, it is straightforward to define alterna-

tive partitions of the user population. That is, for purposes of data exploration, we take
the position that there is no “correct” model for clustering — each model captures different

5

aspects of the data. A domain expert can consider different criteria of interest for partition-
ing users, translate these criteria to alternative models, and evaluate each model in terms
of the usefulness of insights gained. In the case of clustering traffic on a web site, a site
administrator may or may not feel that order of visits are important and use a first-order
or zeroth-order Markov model, respectively.

As we shall describe in the following Section, we can learn a mixture model (K and
the model parameters) given our data. Once the model is learned, we can use it to assign
users to clusters as follows. Given the observed behavior x of a user, we can compute the
probability distribution over the hidden variable C corresponding to the cluster assignment
of the user by Bayes’ rule:

p(ck|x, θ) =
p(ck|θ) pk(x|ck, θ)∑K
j=1 p(cj |θ) pj(x|cj , θ)

(2)

The probabilities p(ck|x, θ) are sometimes called membership probabilities. Once we have
computed these probabilities, we can either assign the user to the cluster with highest
probability—a hard assignment—or assign the user fractionally to the set of clusters ac-
cording to this distribution—a soft assignment. Both types of assignment are commonly
used in practice. As we shall see, in the current implementation of our visualization tool
WebCANVAS, we use hard assignments.

2.2 Learning Mixture Models from Data

Let us begin by considering methods for learning the parameters of a mixture model with
known number of components K, given training data dtrain = {x1, . . . ,xN}. One possible
criterion for doing so is to identify those parameter values for θ that maximize the likelihood
of the training data:

θML = argmaxθ p(dtrain|θ) = argmaxθ

N∏
i=1

p(xi|θ)

where the second equality follows from our i.i.d. assumption. These parameters are often
referred to as maximum likelihood or ML estimates. Alternatively, to encode prior knowledge
about the domain and/or to smooth the ML estimates, one can introduce a prior probability
distribution over the parameters, denoted p(θ). In this situation, a criterion for learning
the parameters is to identify those parameters that maximize the posterior probability of θ

given our training data:

θMAP = argmaxθ p(θ|dtrain) = argmaxθ p(dtrain|θ) p(θ)/p(dtrain)

where the second identity follows by Bayes’ rule. These parameters are often referred to
as maximum a posteriori or MAP estimates. When used in conjunction with vague or
non-informative priors, MAP estimates are smoothed (i.e., less extreme) versions of ML
estimates (see, e.g., Good, 1965). In the work described in this paper, we learn MAP

6

estimates for the parameters θ using diffuse Dirichlet priors with an effective sample size
of 10−2. (Neither the predictive nor visualization results are sensitive to variations in this
effective sample size between 1 and 10−4.) One exception is that, for the prior on the
mixture weights, we used an improper Dirichlet prior with an effective sample size of zero.
The priors are discussed in more detail in the Appendix.

We learn the parameters using the EM algorithm, an iterative algorithm that finds local
maxima for the MAP (and ML) parameter estimates (e.g., Dempster, Laird, and Rubin,
1977). The algorithm chooses starting values for the parameters, and then iterates between
an Expectation or E step and a Maximization or M step until the parameters values converge
to stable values (as described in the next paragraph). In the E step of the algorithm, given
a current value of the parameters θ, we fractionally assign a user with behavior x to cluster
ck using the membership probabilities given by Equation 2. In the M step of the algorithm,
we pretend that these fractional assignments correspond to real data, and reassign θ to
be the MAP estimate given this fictitious data. (See the Appendix for more details.) By
iteratively applying the E step and M step, we monotonically improve the estimates of
the model parameters θ, ensuring convergence (under fairly general conditions) to a local
maximum of the posterior distribution for θ.

There are several reasonable choices for a convergence criterion. In our implementation,
we say that the algorithm has converged when two consecutive iterations produce log like-
lihoods on the training data that differ by less than 0.01%. To initialize the EM algorithm,
we use the noisy-marginal method of Thiesson, Meek, Chickering, and Heckerman (1999)
(see the Appendix for details). Finally, when learning a particular model, we run twenty
sets of initial parameters to convergence, and then use the value for θ that has the high-
est posterior probability. We have found that such “restarting” yields a small systematic
improvement (roughly, 0.2%) in the log posteriors of the parameters.

In the remainder of this section, let us consider how to identify a good value for K.
If these clusters are to be used for visualization, as they are in our application, a sensible
method in principle for choosing K would be have a site administrator look at models
having K = 1, K = 2, and so on, and choose directly. Because this approach is usually too
time consuming, in practice, we choose the number of clusters by finding the model that
accurately predicts Nt new (“test”) cases dtest = {xN+1, . . . ,xN+Nt}. That is, we choose a
model with K clusters that minimizes the out-of-sample predictive log score:

Score(K,dtest) = −
∑Nt

j=1 log2 p(xj |θK)
∑Nt

i=1 length(xi)
(3)

where θK is the MAP estimate of the parameters obtained from the training data, and
length(xi) is the length of the sequence for user i. Note that log scores in general have
interesting properties and have been used extensively (Bernardo, 1979). Also note that this
particular log score, which uses a base-2 logarithm and a length-of-sequence normalization,
corresponds to the average number of bits required by the model to encode a category
request made by the user.

7

2.3 Application to Msnbc.com

We applied the learning techniques we have just described to a large Web navigation data
set. The data comes from Internet Information Server (IIS) logs for msnbc.com and news-
related portions of msn.com for the entire day of September, 28, 1999 (Pacific Standard
Time). Each sequence in the data set corresponds to page views of a user during that
twenty-four hour period. Each event in the sequence corresponds to a user’s request for a
page. Requests are not recorded at the finest level of detail—that is, at the level of URL,
but rather, they are recorded at the level of page category. The categories, developed for
site analysis prior to this investigation, are representative of the structure of the site. The
categories are frontpage, news, tech, local, opinion, on-air, misc, weather, health,
living, business, sports, summary, bbs (bulletin board service), travel, msn-news, and
msn-sports. The number of URLs per category ranges from 10 to 5000. Although the
time of each request is known, we model only the order in which the pages are requested.
Furthermore, any page requests served via a caching mechanism were not recorded in the
server logs and, hence, not present in the data. The full data set consists of approximately
one million sequences (users), with an average of 5.7 events per sequence. The data are
available online at kdd.ics.uci.edu/databases/msnbc/msnbc.html.

For various model types and various cluster sizes K, we learned models using a training
set of 100,023 sequences sampled at random from the original one million. (Increasing
the sample size did not appreciably change the resulting cluster model or the predictive
log-score). We then evaluated the models using the out-of-sample predictive log score in
Equation 3 on a different sample of 98,687 sequences drawn from the original data. EM
was run in the manner specified in Section 2.2. All runs, including those described in the
next section, were performed on a desktop PC with a Pentium III Xeon processor running
at 500MHz with enough memory to avoid paging. In our largest runs with K = 200, only
11.5Mb of memory was used.

Figure 2 shows the out-of-sample predictive log scores for first- and zeroth-order Markov
models for various values of the number of clusters K. We see that the predictive accuracy
of both models increases rapidly as K increases initially. For the zeroth-order Markov
models, the predictive accuracy continues to increase substantially, although less rapidly,
as K increases further. For the first-order Markov models, the predictive accuracy reaches
what appears to be a stable limit around K = 60. Also note that, for values of K of practical
interest (K < 400), the best zeroth-order model is worse at predicting out-of-sample data
than the worst (K = 1) first-order model.

In learning clusters for this data using the first-order Markov mixture model, we observe
an interesting phenomenon that is likely to occur for other domains. In particular, we find
that some of the individual model components encode two or more clusters. For example,
consider two clusters: a cluster of users who initially request category a and then choose
between categories b and c, and a cluster of users who initially request category d and
then choose between categories e and f . These two clusters can be encoded in a single
component of the mixture model, because the sequences for the separate clusters do not

8

Number of Clusters [K]

0 20 40 60 80 100 120 140 160 180 200 3000

O
ut

 o
f S

am
pl

e
L

og
-L

ik
el

ih
oo

d
[b

its
/to

ke
n]

2.2

2.3

2.4

2.5

2.6

2.7

2.8

0th-order
1st-order
1st-order, fixed
initial state

Figure 2: Number of bits (on average) needed to encode an out-of-sample event versus
number of clusters K for a mixture of first-order Markov models, the same model constrained
so that every user in the cluster has the same first page-category request, and a mixture of
zeroth-order Markov models.

9

contain common elements.
The presence of multi-cluster components does not affect the out-of-sample predictive

log score of a model. Nonetheless, when used in conjunction with our visualization tool, the
existence of such components is problematic. Specifically, the behaviors of users from more
than one cluster are presented in the same window, which can be confusing or distracting
for visualization. Consequently, there is a need to produce models without multi-cluster
components. One method to do so is to run the EM algorithm and then post-process the
resulting model, separating any multi-cluster components found. A second method is to
allow only one state (category) to have a non-zero probability of being the initial state in
each of the first-order Markov models.

Using the second method can have the unfortunate consequence that a cluster of users
that have different initial states but similar paths after the initial state are divided into sepa-
rate clusters. Nonetheless, this potential problem was fairly insignificant for our msnbc.com
data. In particular, Figure 2 shows the out-of-sample predictive log score for mixture mod-
els constrained to have the same first request. We see that these constrained models have
a predictive power almost equal to that of the unconstrained models. Of course, when
introducing this constraint, more components are needed to represent the data than in the
unconstrained case. For this particular data, the constrained first-order Markov models
reach their limit in predictive accuracy around K = 100, as compared to the unconstrained
models, which reach their limit around K = 60. For our visualization in Section 3, we use
the constrained model with K = 100 to assign users to clusters.

2.4 Scalability

As noted in the introduction, one of the inherent difficulties in the analysis of server-log
data is in its size. In this section, we examine the scalability of the EM algorithm applied
to our task of clustering sequence data.

The memory requirements of the algorithm are O(NL + KM2 + KM), which typically
reduces to O(NL)—that is, the size of the data—for data sets where M is relatively small.
In fact, our implementation can easily process hundreds of thousands of user sessions—all
in memory—with main memory sizes that are typical for today’s personal computers.

The runtime of the algorithm per iteration is linear in N and K. Nonetheless, it is
difficult to mathematically characterize how the number of iterations required to reach
convergence depends on N and K. When the number of sequences and particularly the
number of clusters increase, the shape of the likelihood surface changes, and new local
maxima or saddle points can appear. As a result, the number of iterations required for the
algorithm to converge may increase with N or K.

To address this issue, we measured the overall runtime of the EM algorithm applied
to our data set for various N and K. We varied the number of sequences from 10,000 to
200,000 and the number of clusters from 10 to 200. Each data point in the graphs represents
the time required for our EM algorithm to converge. Figure 3 shows the overall runtime as a
function of K and N . The dotted lines represent linear fits through the corresponding data

10

Number of Clusters [K]

0 20 40 60 80 100 120 140 160 180 200

T
im

e
[s

]

0

500

1000

1500

2000

2500

3000

100K sequences
50K sequences

200K sequences

Number of Sequences (in thousands) [N]

60 80 100 120 140 160 180 200

T
im

e
[s

]

0

500

1000

1500

2000

2500

3000

3500

50 Clusters

200 Clusters
100 Clusters

Figure 3: Running time of the first-order Markov Chain clustering algorithm. Dotted lines
(linear fit) are included for reference.

11

points. These results demonstrate that, at least for the msnbc.com data set, the runtime
of the EM algorithm scales linearly with N and K.

3 Data Visualization

As discussed earlier, our approach to exploratory data analysis is to first cluster users and
then visualize the behavior of users in each cluster. We have implemented a software tool
that allows a site administrator to visually explore large sets of navigation sequences using
the results of the clustering. The tool is called WebCANVAS (Web Clustering ANalysis
and VisuAlization of Sequences).

In this section, we illustrate the visualization component of WebCANVAS using the
msnbc.com data described earlier. We show clusters generated using a mixture of first-
order Markov models applied to the same 100,023-sample described in Section 2.3. We note
that the K = 100 clusters obtained from this sample did not change appreciably for larger
samples.

Figure 4 shows WebCANVAS’s initial display of twenty four of the one hundred clusters.
The clusters normally are ordered left-to-right and top-to-bottom in descending order by
the number of users in each cluster. This ordering provides useful information. For this
display, however, we have scrambled the order of the clusters so as not to reveal potentially
sensitive information about the msnbc.com site.

Each window corresponds to a cluster. The windows are tiled and each can be easily
resized and/or scrolled. Each row of squares in a cluster corresponds to a user sequence.
Note that WebCANVAS uses hard clustering, assigning each user to a single cluster. Each
square in a row encodes a page request in a particular category encoded by the color of the
square. (A category legend is shown in the lower-right corner of the screen.) For example,
the second user in the second cluster has the request sequence news, on-air, on-air,
local, opinion, opinion, on-air, opinion, news. Note that the use of color to encode
URL category limits the utility of this tool to domains where the number of categories can
be limited to fifty or so.

In our experience with WebCANVAS, a site administrator can identify useful and un-
expected information after only a few moments of looking at displays such as the one in
Figure 4. In this case, the site administrator (S.W.) discovered several unexpected facts:

1. there were large groups of people entering msnbc.com on tech (clusters 11 and 13)
and local (cluster 22) pages;

2. there was a large group of people navigating from on-air to local (cluster 12);

3. there was little navigation between tech and business sections; and

4. there were a large number of hits to the weather pages (cluster 1).

Each of these discoveries suggested actions to be taken to improve the site. For example,
the unusually large number of hits to weather prompted an investigation of that portion of

12

Figure 4: Initial display of msnbc.com data using WebCANVAS. Each window corresponds
to a cluster. Each row in a window corresponds to the path of a single user through the
site. Each path is color-coded by category. The category legend is at the lower right of the
screen. (This figure appears in color in the online version of this paper).

13

the site. The investigation revealed that response time was unacceptably slow (the many
hits were due to users multi-clicking on weather pages in rapid succession in order to elicit
a response from the site).

It is important to note that the visualization displays an (organized) sample of the raw
data, where the choice of the sample is guided by a statistical model. We call this approach
model-directed sampling. Although this approach is quite straightforward, we have found
it to be quite powerful in practice. In particular, we have found that people can gain an
understanding of the behaviors in each cluster (both typical and deviations from typical)
with a quick glance at each random sample.

In contrast, two other methods with which we experimented were not so transparent.
In one approach, we showed the zeroth-order and first-order Markov models corresponding
to a cluster as shown in Figure 5. In another approach, we used the “traffic-flow movie”
produced by Microsoft Site Server v3.0. All of the authors tried the three approaches and
unanimously found the model-directed sampling approach to be by far the most effective at
communicating cluster content. Our informal experiments suggest that model-directed sam-
pling is extremely effective for visualizing clusters, and may have more general application
in data visualization.

One additional advantage of model-directed sampling over the second alternative of
displaying the models themselves is that the former approach is not as sensitive to errors
in modeling. That is, by displaying sampled raw data, behaviors in the data not consistent
with the model used can still be seen and appreciated. In the next section, we shall provide
evidence that our mixture of first-order Markov models is a reasonable model for web traffic
(at least on msnbc.com), and thus this advantage may not play an important role in this
particular application. Nonetheless, this advantage may be important in other domains.

4 On the Suitability of Mixtures of First-Order Markov Mod-

els

The first-order-Markov mixture model that we use in this paper is quite simple. Indeed,
there should be concern that this model is too simple. In this section, however, we describe
experiments that suggest that the use of this model is appropriate—at least when applied
to the msnbc.com data.

Before we do, we should make a connection with previous work (e.g., Sen and Hansen
(2001), Deshpande and Karypis (2001)) that shows the first-order Markov model to be an
inadequate model for empirically-observed page-request sequences. This result should not
be surprising. For example, if a user visits a particular page, there tends to be a greater
chance of he or she returning to that same page at a later time. A first-order Markov model
cannot capture this type of “long-term” memory.

We make this connection because it is important to note that these previous results
should not be used as evidence that the Markov mixture model is inadequate. First, al-
though the mixture model is first-order Markov within a cluster, the overall unconditional

14

Figure 5: An alternative view of a cluster (cluster 8 in Figure 4). This view displays
the zeroth-order and first-order Markov models for the cluster. Probabilities in the model
are encoded by intensity (higher probabilities are brighter). The first column displays the
zeroth-order distribution of category requests. That is, the first column shows, for each
category, the probability that a user in the cluster will request a page in that category.
The remaining columns show the first-order Markov model. The second column displays
the probability distribution over category requests for the first event. The middle block
displays the transition probabilities p(j|i)—the probability that a user will request category
j given the previous request was category i. The last column shows, for each category, the
probability that a user in the cluster will end his/her session given a visit to that category.
In this particular display, users in the cluster start on frontpage and then may proceed to
almost any other category. Once in a category, users may browse for a while, but return to
frontpage before moving to another category. Users tend to leave the site from frontpage

and business.

15

model for Web navigation patterns is not first-order Markov. Second, the msnbc.com data
is different from typical “raw” page-request sequences. Namely, our use of URL categories
results in a relatively small alphabet size as compared to working with uncategorized URLs.
The combined effects of clustering and a small alphabet tend to—at least for the msnbc.com
data set—produce low-entropy clusters in the sense that a few (two or three) categories of-
ten dominate the sequences within each cluster. This effect is apparent in Figure 4. Thus,
the tendency to return to a specific page that was visited earlier in a session can be well
approximated by our simple mixture of first-order Markov models, because the page cate-
gories visited by a user in a given cluster are typically constrained to visit the “dominant”
categories for that cluster.

In Section 4.1, we emphasize the difference between our cluster model and the first-order
Markov model. In Section 4.2, we describe diagnostic checks of our model.

4.1 Mixtures of First-Order Markov Models are not First-Order Markov

As in Section 2, let x = (x1, . . . , xL) be a sequence of length L where each xl is one of M

values from a finite alphabet of symbols (the M page categories). We model x as being
generated by a mixture of first-order Markov models:

p(x) =
K∑

k=1

p(x|ck)p(ck) (4)

p(x|ck) = p(x1|ck)
L∏

i=2

p(xi|xi−1, ck)

Here, for simplicity, we have dropped the explicit mention of parameters.
It is informative to look at the predictive distribution for the next symbol xl+1 under

this mixture model—that is, p(xl+1|x[l,1]), where 1 ≤ l ≤ L, and x[l,1] = (x1, . . . , xl). By
definition,

p(xl+1|x[l,1]) =
K∑

k=1

p(xl+1, ck|x[l,1])

=
K∑

k=1

p(xl+1|x[l,1], ck)p(ck|x[l,1])

=
K∑

k=1

p(xl+1|xl, ck)p(ck|x[l,1]) (5)

where the last line follows from the fact that, given component value ck, xl+1 only depends
on xl. Thus, from Equation 5 above, the first-order-Markov mixture model defines the
probability of the next symbol as a weighted convex combination of the transition probabil-
ities p(xl+1|xl, ck) from each of the individual first-order component models. The weights
are determined by the partial membership probabilities p(ck|x[l,1]) of the prefix (“history”)
subsequence x[l,1].

16

In contrast, the predictive distribution for a standard first-order Markov model (which
can be viewed as a special case of the mixture model with K = 1) is simply

p(xl+1|x[l,1]) = p(xl+1|xl).

Comparing the mixture predictive model of Equation 5 with this standard first-order
Markov model, we see that the two predictive distributions are not equivalent in the general
case. In particular, a mixture of first-order Markov models leads to a predictive distribution
that is itself not first-order Markov. More specifically, the transition probabilities in the
mixture model are a function of the membership weights p(ck|x[l,1]). These weights are in
turn a function of the history of the sequence (via Bayes rule), and typically depend strongly
on the pattern of behavior before xl.

As a specific example, consider the two sequences AAAAAC and BBBBBC. Consider the
problem of predicting the next symbol. In a first-order Markov model, the predictive distri-
bution on the next symbol will be the same for both sequences because it only depends on
the current symbol C. In contrast, consider using a mixture of two Markov models, where
cluster 1 produces sequences with long runs of A’s, no B’s, and an occasional C, and cluster
2 produces sequences with long runs of B’s, no A’s, and an occasional C. Under this mixture
model, the prediction for what follows symbol C will be quite different for each of the se-
quences. Sequence AAAAAC is likely to have a probability near 1 of belonging to cluster 1,
so the conditional (predictive) probability of A will be near 1. In contrast, the conditional
probability of B will be near 1 for sequence BBBBBC.

Thus, a mixture of first-order Markov models is a semantically richer model than a non-
mixture first-order Markov model. The mixture can represent higher-order information for
predictive purposes because the weights can encode (in a constrained fashion) information
from symbols that precede the current symbol.

As an aside, we note that our model evaluation score has an additional interpretation
as a cumulative sum of the “one-step ahead” predictive distributions. To understand this
point, consider the logarithm of the most general form of the distribution over a sequence
x = (x1, . . . , xL) of length L, and consider further its decomposition by the chain rule:

log p(x) = log p(x1, x2, . . . , xL)

= log
[
p(x1) p(x2|x1) · · · p(xL|x[L−1,1])

]

= log p(x1) + log p(x2|x1) + · · · + log p(xL|x[L−1,1])

When this equation is applied to the whole data set dtest we obtain:

log p(dtest) =
N∑

i=1

log p(xi

1) +
Li∑
l=2

log p(xi
l|xi

[l−1,1])

Therefore, maximization of the log-likelihood on test data is equivalent to optimizing the
prediction of the next symbol.

Although the main focus of the work described in this paper is on clustering and visual-
ization rather than “one-step ahead” predictive modeling, it is nonetheless worth pointing

17

out that if the model were to be used for prediction, it is richer than a simple first-order
Markov model because it possesses the capability of capturing some higher-order depen-
dencies via the mixture mechanism. In fact, the experimental results presented in Figure 2
demonstrate that mixtures of first-order Markov models yield significant improvements in
terms of out-of-sample prediction with respect to a simple first-order model for our do-
main. Anderson, Domingos, and Weld (2001) also found that mixtures of Markov models
outperform the simpler first-order Markov models on a set of selected Web-page prediction
tasks.

4.2 Model Diagnostics

As a diagnostic check on the adequacy of the first-order Markov assumption, one can em-
pirically calculate the run lengths of page categories for several of the most likely clusters.
If the data are being generated by a first-order Markov model, then the distribution of these
run lengths will obey a geometric distribution and the empirical estimate of this distribution
should appear geometric within sampling error. Conversely, if the empirical distribution of
run lengths is decidedly non-geometric, then a non-Markov distribution is suggested.

Using the clustering methodology described in Section 3, we calculated the empirical
distribution of run lengths for each category for the five most populous clusters (those with
the five highest mixture weights). We used hard clustering to assign users to clusters, al-
though we would have obtained almost identical results had we used soft clustering, because
many of the cluster-membership probabilities were close to zero or one. To simplify our
report of the results, we plot for each cluster the three most frequently visited categories
that had at least one run length of four or greater. (Categories that have run lengths of
three or fewer provide relatively uninformative diagnostic plots.)

The results are shown in Figure 6. The asterisks mark the empirically observed counts.
The center dotted line on each plot is the expected count as a function of run length under
a geometric model using the empirically estimated self-transition probability of the Markov
chain for the corresponding cluster. The upper and lower dotted lines represent the plus
and minus three-sigma sampling deviations for each count under the model. With few
exceptions (e.g., category 2, cluster 4), the geometric model is a reasonable approximation
to the actual observed run lengths.

5 Related Work

Although there is a substantial amount of prior work on learning and modeling individual
user navigation patterns from web data, much of this work is non-probabilistic in nature and
focuses on finding rules that describe common navigation patterns (rather than clustering)—
for example, Yan, Jacobsen, Garcia-Molina, and Dayal (1996), Chen, Park, and Yu (1998),
Zaine, Xin, and Han (1998), Spilopoulou, Pohle, and Faulstich, (2000), Cooley, Tan, and
Srivastava (2000), as well as numerous commercial systems.

18

0 10 20

0

5

10

lo
g

co
un

t(
R

)

Cluster 1: Category 13

0 10 20

0

5

10 Cluster 1: Category 14

0 20 40
−2

0

2

4 Cluster 1: Category 8

0 10 20

0

5

10

lo
g

co
un

t(
R

)

Cluster 2: Category 1

0 5 10

0

5

10 Cluster 2: Category 7

0 20 40
−2

0

2

4 Cluster 2: Category 8

0 10 20

0

5

10

lo
g

co
un

t(
R

)

Cluster 3: Category 12

0 5 10

0

5

10 Cluster 3: Category 1

0 10 20
−2

0

2

4 Cluster 3: Category 13

0 20 40

0

5

10

lo
g

co
un

t(
R

)

Cluster 4: Category 2

0 5 10

0

5

10 Cluster 4: Category 1

0 5 10

0

5

10 Cluster 4: Category 3

0 10 20

0

5

10

R = Run Length

lo
g

co
un

t(
R

)

Cluster 5: Category 9

0 2 4

0

5

10

R = Run Length

Cluster 5: Category 12

0 2 4

0

5

10

R = Run Length

Cluster 5: Category 6

Figure 6: Empirically observed run lengths superposed on a geometric model for the three
most requested categories in the five largest Markov clusters.

19

There has also been some prior work that directly uses generative probabilistic models
to characterize web site navigation patterns. Huberman et al. (1997) use a random walk
approach to model the number of page-requests users issue at a particular web site. A
variety of Markov models have been applied to the problem of prefetching pages for users
conditioned on past pages visited—for example, Padmanabhan and Mogul (1996), Bestavros
(1996) and Zukerman, Albrecht and Nicholson (1999). Pirolli and Pitkow (2000) investi-
gated k-th order Markov models, with k ranging from one to nine, for modeling which link a
typical user will follow from a given page. Borges and Levene (2000) also describe the use of
kth-order Markov models (in the form of probabilistic hypertext grammars) for web naviga-
tion modeling. Deshpande and Karypis (in press) reported improved predictive performance
with high-order Markov models by selectively “pruning” certain state-dependencies in the
model. These approaches all share with this paper the underlying use of a Markov represen-
tation for modeling of users’ dynamic behavior, but focus on a single model for aggregate
population characteristics, rather than learning clusters of behavior for different groups of
users.

Sarukkai (2000) uses first-order Markov models to model the sequence of pages (or cat-
egories of pages) requested by a user. A “personalized” Markov model is trained for each
different individual and then used for various prediction-related tasks for that user in future
sessions. Sen and Hansen (2003) evaluated variations of second-order Markov and mixture
models for page-request prediction for prefetching, where the mixtures here are mixtures of
individual pages rather than of sequences. Anderson, Domingos, and Weld (2001) evalu-
ated variants of first-order Markov models, conditional independence models, and mixtures
of Markov models for the problem of predicting short-cuts in web page navigation and
found that mixtures of Markov models generally had the best predictive performance. Al-
though these papers use multiple Markov models (in various forms) to model page-request
sequences, their primary focus is on prediction rather than on clustering and visualization.

In fact, the problem of clustering users based on their web navigation patterns has
received little attention. Fu, Sandhu, and Shih (2000) applied BIRCH (a distance-based
clustering algorithm) to clustering user sessions, where each session is represented as a vector
of times spent by the user on each page—that is, a static representation of user behavior.

In a general (non-web) context, the use of model-based probabilistic clustering for mul-
tivariate vector data is well known and widely used. For general reviews see Titterington,
Smith and Makov (1985), McLachlan and Basford (1988), Banfield and Raftery (1993),
Cheeseman and Stutz (1995), and Fraley and Raftery (1998). In addition, there have been
numerous applications of this approach in areas as diverse as consumer marketing (Wedel
and Kamakura, 1998) and atmospheric science (Smyth, Ide, and Ghil, 1999).

Nonetheless, there is relatively little work on probabilistic model-based clustering of
sequences. Rabiner, Lee, Juang, and Wilpon (1989) provide an early algorithm for cluster-
ing different speech utterances using mixtures of hidden Markov models. Poulsen (1990)
introduced a particular form of Markov mixtures for modeling heterogeneous behavior in
consumer purchasing data. Krogh (1994) mentions the possibility of using mixtures of hid-

20

den Markov models for clustering sequences. More general versions of sequence clustering
using Markov mixtures were independently developed by both Smyth (1997, 1999) and
Ridgeway and Altschul (1998), including a general EM framework for learning. Cadez and
Smyth (1999) have shown that all of these algorithms can be viewed as special cases of a
general Bayesian hierarchical model. To our knowledge, the work reported here is the first
application of sequence-based probabilistic clustering to web navigation data.

In terms of visualization of navigation patterns, there are numerous commercial (and
often unpublished) systems that allow one to visualize user navigation patterns at a partic-
ular web site. These systems do not appear to use probabilistic dynamic cluster models. In
a similar vein, the Footprints work of Wexelblat and Maes (1999) provide a variety of tech-
niques and interface tools which allow web surfers to enhance their “information foraging”
experience by visualizing the history of other users using visual metaphors of maps, paths,
and signposts. Minar and Donath (1999) use planar graphs to visualize “crowds of users”
at particular web pages. This type of visualization work can be viewed as complementary
to the more quantitative modeling approach we pursue here.

6 Summary and Future Work

We have developed a simple approach for clustering and visualizing user behavior on a
web site, and implemented our method in a visualization tool called WebCANVAS. In our
approach, we first cluster user behaviors using a mixture of first-order Markov models. We
then display the behavior of a random sample of users in each cluster along with the size
of each cluster. We have applied this approach to the visualization of web traffic on the
msnbc.com site, and have found the approach to yield easy-to-understand, surprising, and
useful insights.

In using first-order Markov models for clustering, we have taken into account the order
in which each user requests pages. In fact, experiments described in this paper suggest that
first-order Markov model mixture components are appropriate for the msnbc.com data.
Another feature of our use of model-based clustering is that learning time scales linearly
with sample size. In contrast, agglomerative distance-based methods scale quadratically
with sample size.

Finally, there are several extensions to our approach that could be investigated. One is
to model the duration of each visit. This extension can be achieved by using any number
of duration models (e.g., log-normal). Another set of extensions avoid the limitation of our
method to small M , modeling page visits at the URL level. In one such extension, we can
use Markov models to characterize both the transitions among categories and the transitions
among pages within a given category. Alternatively, we can use a hidden-Markov mixture
model to learn categories and category transitions simultaneously.

21

7 Acknowledgments

We thank Max Chickering for his comments on an draft of this paper. The data set for
this paper was provided by msnbc.com. The work of Igor Cadez was supported by a
Microsoft Graduate Fellowship. The work of Padhraic Smyth was supported in part by
the National Science Foundation under Grants IRI-9703120 and IIS-0083489, by an IBM
Faculty Partnership award, and by a grant from Microsoft Research.

References

[Anderson et al., 2001] Anderson, C., Domingos, P., and Weld, D. (2001). Adaptive Web
navigation for wireless devices. In Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, pages 879–884. Morgan Kaufmann, San Francisco,
CA.

[Banfield and Raftery, 1993] Banfield, J. and Raftery, A. (1993). Model-based Gaussian
and non-Gaussian clustering. Biometrics, 49:803–821.

[Bernardo, 1979] Bernardo, J. (1979). Expected information as expected utility. Annals of
Statistics, 7:686–690.

[Bernardo and Smith, 1994] Bernardo, J. and Smith, A. (1994). Bayesian Theory. John
Wiley and Sons, New York.

[Bestavros, 1996] Bestavros, A. (1996). Speculative data dissemination and service to re-
duce server load, network traffic, and service time in distributed information systems.
In Su, S. Y. W., editor, Proceedings of the Twelfth International Conference on Data
Engineering, pages 180–187. IEEE Computer Society.

[Borges and Levene, 2000] Borges, J. and Levene, M. (2000). Data mining of user navi-
gation patterns. In Masand, B. and Spiliopoulou, M., editors, Web Usage Analysis and
User Profiling, pages 92–111. Springer, Berlin.

[Cadez and Smyth, 1999] Cadez, I. and Smyth, P. (1999). Probabilistic clustering using
hierarchical models. Technical Report 99–16, Information and Computer Science, Uni-
versity of California, Irvine.

[Cheeseman and Stutz, 1995] Cheeseman, P. and Stutz, J. (1995). Bayesian classification
(AutoClass): Theory and results. In Fayyad, U., Piatesky-Shapiro, G., Smyth, P., and
Uthurusamy, R., editors, Advances in Knowledge Discovery and Data Mining, pages 153–
180. AAAI Press, Menlo Park, CA.

[Chen et al., 1998] Chen, M.-S., Park, J., and Yu, P. (1998). Efficient data mining for
traversal patterns. IEEE Transactions on Knowledge and Data Engineering, 10:209–221.

22

[Cooley et al., 2000] Cooley, R., Tan, P.-N., and Srivastava, J. (2000). Websift: the Web
site information filter system. In Masand, B. and Spiliopoulou, M., editors, Web Usage
Analysis and User Profiling, pages 163–182. Springer, Berlin.

[Dempster et al., 1977] Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likeli-
hood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
B 39:1–38.

[Deshpande and Karypis, 2003] Deshpande, M. and Karypis, G. (2003). Selective Markov
models for predicting web-page accesses. ACM Transactions on Internet Technology. To
appear.

[Fraley and Raftery, 1998] Fraley, C. and Raftery, A. (1998). How many clusters? Which
clustering method? Answers via model-based cluster analysis. Computer Journal, 41:578–
588.

[Fu et al., 2000] Fu, Y., Sandhu, K., and Shih, M.-Y. (2000). Clustering of Web users based
on access patterns. In Masand, B. and Spiliopoulou, M., editors, Web Usage Analysis
and User Profiling, pages 21–38. Springer, Berlin.

[Good, 1965] Good, I. (1965). The Estimation of Probabilities. MIT Press, Cambridge,
MA.

[Huberman et al., 1997] Huberman, B., Pirolli, P., Pitkow, J., and Lukose, R. (1997).
Strong regularities in World Wide Web surfing. Science, 280:95–97.

[Krogh, 1994] Krogh, A. (1994). Hidden Markov models in computational biology: Appli-
cations to protein modeling. Journal of Molecular Biology, 235:1501–1531.

[McLachlan and Basford, 1988] McLachlan, G. and Basford, K. (1988). Mixture Models:
Inference and Applications to Clustering. Marcel Dekker.

[Minar and Donath, 1999] Minar, N. and Donath, J. (1999). Visualizing crowds at a Web
site. In Conference on Human Factors in Computing Systems; CHI99, pages 186–187.

[Padmanabhan and Mogul, 1996] Padmanabhan, V. and Mogul, J. (1996). Using predictive
pre-fetching to improve world wide web latency. ACM Computer Communication Review,
26:22–36.

[Pirolli and J. Pitkow, 1999] Pirolli, P. and J. Pitkow, J. (1999). Distribution of surfer’s
paths through the world wide web. World Wide Web, 2:29–45.

[Poulsen, 1990] Poulsen, C. (1990). Mixed Markov and latent Markov modelling applied to
brand choice behavior. International Journal of Research in Marketing, 7:5–19.

23

[Rabiner et al., 1989] Rabiner, L., Lee, C., Juang, B., and Wilpon, L. (1989). HMM clus-
tering for connected word recognition. In Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, pages 405–408. IEEE Computer Society Press,
Los Alamitos, CA.

[Ridgeway and Altschuler,] Ridgeway, G. and Altschuler, S. Clustering finite discrete
Markov chains. Proceedings of the Section on Physical and Engineering Sciences, pages
228–229.

[Sarukkai, 2000] Sarukkai, R. (2000). Link prediction and path analysis using Markov
chains. Computer Networks, 33(1–6):377–386.

[Sen and Hansen, 2003] Sen, R. and Hansen, M. (2003). Predicting a Web user’s next access
based on log data. Journal of Computational Graphics and Statistics, 12(1):143–155.

[Smyth, 1997] Smyth, P. (1997). Clustering sequences using hidden Markov models. In
Mozer, M., Jordan, M., and Petsche, T., editors, Advances in Neural Information Pro-
cessing Systems 9, pages 648–654. MIT Press.

[Smyth, 1999a] Smyth, P. (1999a). Multiple regimes in Northern hemisphere height fields
via mixture model clustering. Journal of the Atmospheric Sciences, 56:3704–3723.

[Smyth, 1999b] Smyth, P. (1999b). Probabilistic model-based clustering of multivariate
and sequential data. In Proceedings of Seventh International Workshop on Artificial
Intelligence and Statistics, pages 299–304. Morgan Kaufmann, San Francsico, CA.

[Spiliopoulou et al., 2000] Spiliopoulou, M., Pohle, C., and Faulstich, L. (2000). Improving
the effectiveness of a web site with Web usage mining. In Masand, B. and Spiliopoulou,
M., editors, Web Usage Analysis and User Profiling, pages 142–162. Springer, Berlin.

[Thiesson et al., 1999] Thiesson, B., Meek, C., Chickering, D., and Heckerman, D. (1999).
Computationally efficient methods for selecting among mixtures of graphical models,
with discussion. In Bayesian Statistics 6: Proceedings of the Sixth Valencia International
Meeting, pages 631–656. Clarendon Press, Oxford.

[Wedel and Kamakura, 1998] Wedel, M. and Kamakura, W. (1998). Market Segmentation:
Conceptual and Methodological Foundations. Kluwer Academic Publishers.

[Wexelblat and Maes, 1999] Wexelblat, A. and Maes, P. (1999). Footprints: History-rich
tools for information foraging. In Proceedings of ACM CHI 99 Conference on Human
Factors in Computing Systems, pages 270–277.

[Yan et al., 1996] Yan, T., Jacobsen, M., Garcia-Molina, H., and Dayal, U. (1996). From
user access patterns to dynamic hypertext linking. Computer Networks, 28(7–11):1007–
1014.

24

[Zaiane et al., 1998] Zaiane, O., Xin, M., and Han, J. (1998). Discovering Web access
patterns and trends by applying OLAP and data mining technology on Web logs. In
Proceedings of the Advances in Digital Libraries Conference, pages 19–29.

[Zuckerman et al., 1999] Zuckerman, I., Albrecht, D., and Nicholson, A. (1999). Predicting
user’s requests on the WWW. In Proceedings of the Seventh International Conference on
User Modeling, pages 275–284. Springer Wien.

A Appendix: The EM Algorithm for Mixtures of Markov

Models

In this appendix, we describe the first-order-Markov mixture model and the associated
learning algorithm in detail.

A.1 Notation and Model

As described in the main body of the paper, let dtrain = {x1, . . . ,xN} be a set of sequences,
where each sequence xi consists of Li observed states xi = (xi

1, . . . , x
i
Li

). Each state xi
j

takes values from a discrete alphabet xi
j ∈ [1, . . . , M]. In notation that is consistent with,

but more detailed than that in the main body of the paper, we write θ = {π, θI , θT } where:

• π is a vector of K mixture weights:

π = {π1, π2, . . . , πK}, πk = p(ck|θ),
K∑

k=1

πk = 1.

• θI is a set of K initial state probability vectors:

θI = {θI
1, θ

I
2, . . . , θ

I
K}

where the per-component initial state probabilities θI
k, 1 ≤ k ≤ K are vectors of

length M :

θI
k = {θI

k,1, θ
I
k,2, . . . , θ

I
k,M}, θI

k,j = p(x1 = j|ck, θ),
M∑

j=1

θI
k,j = 1.

• θT is a set of K transition matrices:

θT = {θT
1 , θT

2 , . . . , θT
K}

where the per-component transition probability matrices θT
k , 1 ≤ k ≤ K are matrices

of size M − 1 × M :

θT
k =

[
θT
k,j,l

]
, θT

k,j,l = p(xt = l|xt−1 = j, ck, θ),
M∑
l=1

θT
k,j,l = 1.

25

The probability of observing a particular sequence xi under this K-component mixture
model is therefore given by

p(xi|θ) =
K∑

k=1

p(ci
k|θ) p(xi|ck, θ)

=
K∑

k=1

πk p(xi|θI
k, θ

T
k)

=
K∑

k=1

πk p(xi
1|θI

k)
Li∏
t=2

p(xi
t|xi

t−1, θ
T
k)

=
K∑

k=1

πkθ
I
k,xi

1

Li∏
t=2

θT
k,xi

t−1,xi
t
. (6)

The probability of observing a full data set dtrain = {x1,x2, . . . ,xN} is known as the
likelihood and is defined as

p(dtrain|θ) =
N∏

i=1

p(xi|θ)

=
N∏

i=1

K∑
k=1

πkθ
I
k,xi

1

Li∏
t=2

θT
k,xi

t−1,xi
t
, (7)

where the product over the N sequences corresponds to an assumption that the individual
sequences are mutually independent given θ (the i.i.d. assumption).

A.2 Prior Distributions

One approach to learning parameters from data is to find those parameter values that
maximize the likelihood of the data. For mixture models, such maxima can not be found
in closed form. Consequently, iterative algorithms such as the EM algorithm to be outlined
are used.

One difficulty associated with using this maximum-likelihood approach relates to zero
probabilities. For example, suppose there are no transitions from A to B in the data.
Then, our estimate of the transition probability from A to B in each mixture component
will be zero. That is, according to our model, the transition is impossible. To address this
difficulty, we can assign prior probabilities to θ, reflecting the belief that all transitions are
possible, and use the maximum of the posterior distribution over θ as our estimate for the
parameters.

The posterior distribution for θ given the data can be written (by Bayes’ rule) as
p(θ|dtrain) = p(dtrain|θ)p(θ)/p(dtrain), where p(θ) is a prior distribution on θ. The maxi-
mum a posteriori (MAP) parameter vector is defined as the parameter vector θ that maxi-
mizes this posterior distribution, that is,

θMAP = arg max
θ

p(dtrain|θ)p(θ)

26

where the term p(dtrain) is ignored since it is not a function of θ. Thus, the MAP parameters
θMAP that correspond to the maximum of p(θ|dtrain) can be found by maximizing the
product of the likelihood and the prior, both viewed as functions of θ. In practice it is often
convenient to work with the log of this expression, the log posterior function,

lPdtrain(θ) = log p(dtrain|θ) + log p(θ).

Again, for mixture models, closed-form solutions for θMAP do not exist; and iterative algo-
rithms (such as the EM procedure outlined in A.3) are used to search for maxima.

The parameters for the first-order-Markov mixture model (π, θI
k for every k, and each

row of θT
k for every k) are discrete probability distributions with unknown values—that is,

multinomial distributions. An often-used prior distribution for a multinomial distribution
is the Dirichlet distribution. A Dirichlet distribution for the multinomial distribution with
parameters φ = (φ1, . . . , φa) is given by

p(φ1, . . . , φa|α1, . . . , αa) =
Γ(

∑a
i=1 αi)∏a

i=1 Γ(αi)

a∏
j=1

φ
αj−1
j ,

subject to
∑a

i=1 φi = 1, 0 < φi < 1, αi > 0.

Given this Dirichlet prior for φ, suppose we observe data (a multinomial sample) such
that there are ni occurrences of state i for i = 1, . . . , a. Then, the posterior distribution
for φ is another Dirichlet distribution with hyperparameters (α1 + n1, . . . , αa + na). In
this regard, the Dirichlet distribution is said to be a conjugate distribution for multinomial
sampling. Furthermore, the α’s, which are often referred to as hyperparameters of the
Dirichlet distribution, can thus be thought of as fictitious counts. Under this interpretation,
the Dirichlet distribution is said to have an equivalent sample size of

∑a
i=1 αi.

The MAP values for any set of parameters will depend on the coordinate system used
to express the parameters. The MAP values for a multinomial distribution expressed in the
natural parameter space (see, e.g., Bernardo and Smith, 1994) is given by

φMAP
i =

ni + αi∑a
j=1 nj + αj

, i = 1, . . . , a

A.3 Our EM-Algorithm Implementation

To describe the EM algorithm for finding a local maximum of our model parameters θ, it is
convenient to define the class-conditional probability distribution—namely, the probability
that sequence xi was generated by cluster (or mixture component) k given parameters θ:

Pi,k(θ) = p(ck|xi, θ) =
πk p(xi|ck, θ)∑K

k′=1 πk′p(xi|ck′ , θ)
.

The set of class-conditional distributions for a data set can be represented by a matrix of
probabilities

P (θ) = [Pi,k(θ)] , 1 ≤ i ≤ N, 1 ≤ k ≤ K

27

where each row corresponds to the class-posterior for individual sequence xi.
A key quantity in the description of the EM is the expected value of the objective

function over the class-posterior distribution using a fixed set of “current” parameters—the
Q function. When this function is maximized with respect to the parameters, an update
rule is derived that guarantees, under some weak conditions, that the objective function
will increase and ultimately converge to a fixed point. The Q function for the log-posterior
(MAP) function is defined as:

Q(θ, θold) = 〈lPdtrain(θ)〉P (θold) =
N∑

i=1

K∑
k=1

Pi,k(θold) log
[
πkp(xi|ck, θ)

]
+ log p(θ).

If we maximize the Q function with respect to each subset of parameters θ one can show
that the following are the update rules for each set of parameters:

• Mixture Weights:

πk =
∑N

i=1 Pi,k(θold) + απ
k∑K

k′=1

[∑N
i=1 Pi,k′(θold) + απ

k′
] (8)

where απ
k is the hyperparameter associated with πk, k = 1, . . . , K. Note that this

equation corresponds to computing MAP parameters as if the fractional assignment
of data to the mixture components corresponded to real data. The same is true for
the remaining update rules.

• Initial State Probabilities:

θI
k,j =

∑N
i=1 Pi,k(θold)δ(xi

1, j) + αI
k,j∑d

j′=1

[∑N
i=1 Pi,k(θold)δ(xi

1, j
′) + αI

k,j′
] (9)

where αI
k,j is the hyperparameter corresponding to θI

k,j and δ(xi
1, j) is an indicator

function that is equal to 1 if the arguments are equal and 0 otherwise.

• Transition Probabilities:

θT
k,j,l =

∑N
i=1 Pi,k(θold)nj,l(xi) + αT

k,j,l∑d
l′=1

[∑N
i=1 Pi,k(θold)nj,l′(xi) + αT

k,j,l′
] (10)

where αT
k,j,l, l = 1, . . . , M is the hyperparameter associated with θT

k,j,l.

As mentioned in the main body of the paper, each multinomial distribution was assigned
its own uninformative Dirichlet prior: απ

k = 0 for every k, αI
k,j = 0.01/M for every k and j,

and αI
k,j,l = 0.01/M for every k, j, and l.

Also as mentioned in the paper, our implementation of the EM algorithm consists of
one or more runs, where each run consists of an initialization phase and a refinement
phase. In the initialization phase we select a set of random initial parameters (subject to
some constraints), whereas in the subsequent refinement phase, we iteratively apply the

28

parameter update equations above to locally optimize the log-posterior function. Because
the procedure is guaranteed only to find a local maximum of the log-posterior function,
we perform several runs and report the solution with the highest value of the log posterior
function. In our experiments, we perform twenty runs (each with different random initial
parameter settings) with the following two phases:

• Initialization. We choose the parameters π1, . . . , πK to be equal. In addition, we use
the noisy-marginal method of Thiesson et al. (1999) to initialize θI and θT . In this
approach, we initialize the parameters for each component of the mixture model by
estimating the parameters for a single-component cluster model, and then randomly
perturbing the parameter values by a small amount to obtain K sets of parameters. In
particular, we first determine the maximum-likelihood parameter configuration under
the assumption that there is only one class. This step can be done in closed form.
Next, for each multinomial distribution in this single-component model, we create a
Dirichlet distribution such that (1) the maximum values of this Dirichlet distribution
agrees with the corresponding maximum-likelihood estimates, and (2) the equivalent
sample size of each Dirichlet is given by the user. In our experiments, we use an
equivalent sample size of 2M for each Dirichlet distribution. We then sample the
parameters for each mixture component from this Dirichlet distribution.

• Refinement consists of an iterative application of the update equations (8)–(10) until
the relative change in the log-posterior function in consecutive iterations is less than
0.01%. In the experiments reported in this paper, the EM algorithm always converged
in less than 100 iterations.

29

