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1 Overview

MultiVariate Nonhomogeneous Hidden Markov Model toolbox (MVN-HMM) is a modular col-
lection of algorithms related to modeling sequences of vector data using hidden Markov models
(HMM), commonly used to model time series or dynamical systems. The toolbox contains C++
implementations of algorithms for parameter estimation (Baum-Welch), most likely sequence esti-
mation (Viterbi), data sampling from the model, data log-likelihood estimation as well as routines
to compute simple statistics of the data, e.g. mean, correlation, etc. The model specification is
quite flexible, and the models are not limited to stationary HMMs. The toolbox can train mod-
els for both real- and discrete-valued vector data although the emphasis during development was
primarily on discrete-valued data.

The purpose of this manual is to allow the user to start using the toolbox with a number of
commonly used models, without going into the details of all available options and modules. The
manual assumes some prior knowledge of hidden Markov models, and does not provide the details
of the algorithms used in the code. While the document by no means is a comprehensive manual,
it should provide enough information to use the toolbox for data analysis using HMMs.

2 Brief Model Description

A hidden Markov model (HMM) is a doubly stochastic model where observations are mod-
eled conditioned on the small number of discrete states, with Markovian transitions between the
states. Let R = (Ry,...,Ry) be a sequence of observations (assumed to be vectors), and let
S = (51,...,S57) be the corresponding sequence of discrete (or hidden) states. The directed graph-
ical model for an HMM is shown in Figure 1. The log-likelihood of the data under this model can
be written as
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A first-order homogeneous (or stationary) HMM uses a transition matrix I' to characterize
P (5;|S;—1) where I' has entries v;; = P (S; = j|S¢—1 = ). The homogeneity can be relaxed by
allowing the transitions to depend on additional observed variables. Let X = (Xi,...,X7) be
a sequence of observed input vectors, one for each data vector. One way to extend an HMM to



Figure 2: Graphical model interpretation of a nonhomogeneous hidden Markov model

nonhomogeneous HMM (NHMM) [1] is to make S; dependent on both S;_; and X;:
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A graphical model interpretation of NHMM is provided in Figure 2.

3 Package Details and Installation

The package has been developed in C++ on the RedHat 9.0/Fedora 3 Linux platform. The initial
development has been performed on the Sun Solarix 5.8 platform. The code has been tested on
both platforms, and no crashes have been experienced on either platform, provided the parameter
file is specified properly. The authors cannot guarantee compatibility for other platforms, although
we have used it under MacOS X without difficulty (with make -fmakefile.linux).

The package consists of the source code, licence file, text README file with the current set
of options, development update notes, a number of perl scripts, and a directory with example
parameter files and data sets. The package contains one makefile for each Linux and Solaris
platform. The source code is compatible with the g++ compiler on Linux (without warnings) and
CC compiler for Sun (with a few minor warnings). Depending on the configuration of your system,
you may have to tweak the makefile to have the program compile. We also recommend adding the
directory with the binaries and the scripts (bin) to the path in the environment file.



Some of the algorithms implemented in the toolbox have been described in [2], [4], and [3]. More
details will be provided in a future release of an expanded manual.

4 Running the program

In order to run the software, the user must first specify the options or parameters with which
the program will run. One of the flipsides of the flexibility of the software is that the number of
tunable parameters is quite large and cannot be easily passed in a command line. Instead, the
program expects to be passed a parameter file with the values of parameters. The command line
to run the program is

mvnhmm (parameter file) [seed)

Seed specifies the initialization seed for the random number generator and is set to 0 if omit-
ted. The ability to specify the random number generator seed is crucial for the ability to reproduce
the results.

There are four types of parameters passed to the program in the parameter file (options covered
in this manual are typed in boldface):

1. Mode to run the program in: action, xval_type, examples_out.

2. Specifics and auxiliaries for each mode: num restarts, num _simulations, analysis,
em_precision, em_verbose, initialization, filling.

3. Model related parameters: num _states, model_type, emission, input_distribution

4. Data file related parameters: data, num_discrete_data_components,
num_real_data_components, num_data_sequences, data_sequence _length,
input_filename, num_discrete_input_components, num _real_input_components,

num_input_sequences, input_sequence_length, model_filename, num_models, output,
state_filename.

In this document, we will only describe the most essential options while leaving more obscure ones
to the full manual. The specification file allows comments beginning with # and ending at the end
of the line. Empty lines are ignored.

4.1 Commonly Used Options

action (type) — specifies what task the program should perform. The values for the type of
action are:

e learn — learns the values of the parameters for the model given the data (default for option
action);

e viterbi — finds the most likely sequence of hidden states for each data sequence given the
model;

e 11 — calculates the log-likelihood of the data given the model;
e simulation — simulates the data given the model;

e analysis — calculates a summary statistic of the data (does not require a model specification).



model_type (type) — type of model to use. Possible model types are:

e hmm — homogeneous hidden Markov model (default for option model _type);

e nhmm — non-homogeneous hidden Markov model with transitions dependent on the values
of the input variables (or covariates). NHMM also requires the specification of the input
distribution (input_distribution) and the specification of the file with input variables (in-
put_filename).

All model types require the specification of the type of emission probability distribution (distribu-
tion of observations given hidden states) using emission.

num states (positive integer) — number of hidden states. The default value is 2. While
models with 1 hidden state value are allowed, the resulting models are not truly HMMs. As a word
of caution, models with large number of values will take a long time to train.

emission (distribution type) — specification of the probability distribution type for each hid-
den state (assumed the same for all states). It is possible to specify a large number of distributions
including nested distributions and mixtures. Mentioned below are just a few examples. Assume
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e independent (num;) bernoulli (nums) — conditionally independent Bernoulli (coin-toss)
distribution with nums outcomes (0 through nums — 1) on num; variables (numy = M),
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e chow-liu (num;) (nums) - tree-structured distribution with numsy outcomes (0 through
numg — 1) of num, variables (see [3] or [2] for more details);

e gaussian (num) — normal distribution with full covariance on num data variables,
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e independent (num;) chain-bernoulli (nums) — conditionally independent conditional
on the previous observed value Bernoulli (coin-toss) distributions with nums outcomes (0
through numso — 1) on num, data variables,
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e conditional-chow-liu (num;) (numsg) — tree-structured conditional distribution with nums
outcomes (0 through numsg — 1) of num; variables (see [3] or [2] for more details);

e independent (num;) delta-exponential (nums) — conditionally independent numsy-component
mixtures of Dirac delta function at 0 and nums — 1 exponential function on num; data vari-

ables,
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e independent (num;) delta-gamma (numg) — conditionally independent numsy-component
mixtures of Dirac delta function at 0 and nums — 1 Gamma function on num, data variables,
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input_distribution (distribution type) - specification of the probability distribution influenc-
ing the hidden state transition matrix given the input variables. Currently, only a few of input
distributions are considered and implemented:

e transition-logistic (num states) (num_input_variables) — a variation of polytomous
(multinomial) logistic distribution used with nonhomogeneous hidden Markov models to de-
scribe a nonhmogeneous transition matrix. num_states is the number of hidden states, and
num_input_variables is the number of input variables,

exp (aij + pjxt)

P(St :j|St_1 = i,Xt = X) =
iy exp (oir, + pixt)

where K = numc_states.

data (filename) — file containing the data set ot be analyzed. The data file is assumed to be a
space or tab delimited file of vectors (see Section 4.2 for more details). Must be accompanied by
num_discrete_data_components, num_data_sequences, and data_sequence length.

num_discrete_data_components (non-negative integer) — number of discrete-valued com-
ponents in each data vector (default is 0).

num_data_sequences (positive integer) — number of data vector sequences. All sequences
are assumed to be of the same length.

data_sequence_length (positive integer) — length of each data vector sequence.

input_filename (filename) — file location of the input variables. The input file is assumed to
be of the same format as the data file, space or input delimited file of vectors. Must be accompanied
by num_real_input_components, num_input_sequences, and input_sequence_length.

num_real_input_components (non-negative integer) — number of real-valued components
in each input vector (default is 0).

num_input_sequences (positive integer) — number of input vector sequences. All sequences
are assumed to be of the same length. The number of input sequences must match the number of
data sequences.

input_sequence_length (positive integer) — length of each input vector sequence. While
redundant, the length of input sequencces must match the length of data sequences.



output (filename) — the location of file where the results of the program run will be written.
Note that the type of output file will depend on the action. If no filename is provided, the results
are outputted to the screen.

model_filename (filename) — the location of the file with the model parameters. Required for
action types viterbi, 11, and simulation.

num restarts (positive integer) — number of random restarts used during the parameter
estimation. This option is used with action type learn. Default valued is 1.

num_simulations (positive integer) — number of times a data set is simulated from a model.
The number of sequences in each set is specified by num_data_sequences, and the length of each
simulated sequences is specified by data_sequences_length. Default value is 1.

xval_type (type) — cross-validation mode used with the software. There are two options:

e none — no cross-validation used (default option). All of the data sequences are used in all
runs.

e leave_n_out — leave-n-out cross-validation. Assuming N data sequences, each run consists of
N/n runs with k-th run (k =1,..., N/n) using sequences 1,...,(k—1)xn,kxn+1,..., N.
This option requires the specification of the number of sequences to leave out via the parameter
examples_out.

examples_out (positive integer) — number of sequences to leave out with cross-validation type
leave_n_out. The number of left out sequences must be between 1 (default) and a half of the total
number of sequences.

analysis (type) — the type of data statistics to collect for action analysis. Currently, can only
collect statistics for binary data sets. Possible type values are:

e mean — proportion of 1’s for each variable;
e correlation — Pearson’s correlation between each pair of variables;

e persistence — proportion of Os after a 0 and 1s after a 1 for the same variable as computed
for each variable;

e dry — histogram of consecutive occurrences of Os for the same variable (dry spell runs) for
each variable;

e wet — histograms of consecutive occurrences of 1s for the same variable (wet spell runs) for
each variable;

e information — mutual information values for each pair of variables;

e logodds — log-odds ratio for each pair of variables.



4.2 File formats

There are a few different file types used with the toolbox. Although types havve some significant
differences, the same general rules used when the files are read in by the program. All files are
stored and recorded in ASCII format. The files may contain comments as the toolbox ignores all
text in the files after the character “#”. Except for the specification file, only numeric values can be
processed. Spaces, tabs, and carriage return all serve as separators between numeric values. The
toolbox will ignore all extra separators. Below, we provided some additional information about
most frequent file types.

e Data file is assumed to consist of sequences of vectors. This type of file is passed to the
program using options data or input_filename, and is the type of file generated in the
simulation mode. Each vector is in turn assumed to consist of multiple components. When
the program reads in the data file, it reads in all components of the first vector, then all
components of the second vector, and so on until the whole sequence of vectors is read. Then
the subsequent sequence of vectors is read in, and so on until all sequences are read in. The
number of sequences, lengths of sequences, and the number of components are specified in
the parameter file. Values for categorical variables are assumed to be represented by natural
numbers (e.g., a binary variable would take on values 0 and 1). The toolbox will treat NaN
entries as missing.

e Model file contains the values of the model’s parameters. This is the type of file generated
by the program in the learn mode (see example in Section 5), and the type of file used
in other modes and passed to the program using model _filename option. The file does
not contain the specification of the model, but only the parameter values. It will contain
comments indicating what parameter the value corresponds to, the index information allowing
the program to match the parameter value to the corresponding vector component in the data,
and the values of the parameters. The bottom four lines of the file provide some basic statistics
of the learning: log-likelihood (and scaled log-likelihood) of the data given the model, Bayes
Information Criterion, and the number of failed runs. The run is flagged as failed if the
log-likelihood of the model is infinite or NaN. Most likely reasons for failure are numerical
instabilities and overfitting.

e Analysis file contains statistics of the data. It is generated in the analysis mode.

e State sequence file contains most likely state sequences for the data given the model. It
is generated in the viterbi mode and consists of space-delimited sequences (rows) of state
indicators (integers from 0 to the number of hidden states minus one), one for each vector
sequence of the data set.

5 Examples

Directory examples contains directories with several data sets, parameter files, and an example
of a script run.

The subdirectory param files contains several example parameter files for various set-ups:
model learning (i.e. training), most likely sequence estimation, simulation, computation of data
log-likelihood, and data analysis. The filenames given to the parameter files indicate the mode
in which the program is run, the model type, and the emission type. File template contains the
template with all currently available options for the software.



The subdirectory outputs contains outputs of the program runs with some of the parameter files
with default seed.

The subdirectory models contains models used in some of the parameter files.

The subdirectory data contains some daily rainfall data sets from the state of Ceard, Northeast
Brazil (see [4] for some additional info). It also contains data simulated from an HMM with
Gaussian emissions (model hmm_gaussian).

5.1 Model Learning Example

Below is an example of using the toolbox to learn the parameters of the model. This example
can be found in examples/param files/learn hmm_independent. The model is an HMM with 4
hidden states with emission probabilities modeled as 10 conditionally independent binary (0 or 1)
Bernoulli distributions. The data set is located in directory examples/data/brazil occurrence data
and consists of 24 x 90 sequences of 10 binary numbers. The algorithm uses 10 different starting
points and outputs the result (model parameters) of the best of 10 runs into the file
examples/outputs/learn hmm_independent. To run the toolbox with this example, change the
directory to examples/param files/ and run mvnhmm learn hmm_independent.

# Action
action learn

# Type of the model
model_type hmm

# Number of hidden states
num_states 4

# Emission distribution
emission
independent 10 bernoulli 2

# Data file
data ../data/brazil_occurrence_data

# Number of finite-valued vector components for the data
num_discrete_data_components 10

# Number of output data sequences
num_data_sequences 24

# Length of each sequence
data_sequence_length 90

# Output file
output ../outputs/learn_hmm_independent



# Number of random restarts
num_restarts 10

5.2 Example of Model Parameters File

The excerpts from the result of the run of the parameter file (with default seed) from the pre-
vious subsection is provided below. For HMMs, the parameter file contains P (S) (first line of
parameters), P (S¢|S;—1) (the transition matrix), and then P (R;|S; = i), the parameters for each
hidden state ¢ (under State #i). Each state consists Bernoulli distributions for each of 10 vec-
tor components (0 through 9) with two probabilities (P (R¢|S:) = 0 and 1) for each component.
Interpretation of the model parameters depends on application. Here (precipitation modeling),
probabilities of 1 (second column in the probabilities in each of hidden states) for a component cor-
responds to probability of rain for the respective rain station given the hidden state. For example,
the probability of rain in state 1 for station 6 is 7.370570344412¢-02 = 0.0737.

# This file contains the parameters of the HMM
# First state probabilities:
2.303191708043e-03 6.667565498714e-01 1.105932880693e-01 2.203469703513e-01

Transition matrix:

.659160742980e-01 1.426541325258e-01 1.227510352329e-01 1.686787579433e-01
.456102706329e-01 6.795820646524e-01 1.506500167471e-01 2.415764796763e-02
.819946284549e-01 1.910636564195e-01 4.242538459204e-01 2.026878692051e-01
.648174395276e-01 1.202733861656e-02 1.196452640076e-01 7.035099578483e-01
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Parameters for the
State #1:

emission distributions for different possible hidden states:

.754067036457e-01 2.245932963543e-01
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.539662253961e-01

.167467708670e-01

.310120912977e-01

.760346199131e-01

.262942965559e-01

.663832499786e-01

.868134023556e-01

.147058695387e-01

.041020582004e-01

State #2:

.460337746039e-01

.832532291330e-01

.689879087023e-01

.239653800869e-01

.370570344412e-02

.336167500214e-01

.131865976444e-01

.852941304613e-01

.958979417996e-01



.645380144018e-01 3.546198559824e-02

.207729680219e-01 7.922703197806e-02

.988931224789e-01 1.011068775211e-01
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.708213567685e-01 2.917864323147e-02

Log-likelihood of the data set: -1.215351861061e+04
Per-dimension log-likelihood of the data set: -5.626628986392e-01
Bayes Information Criterion score: 2.472931971375e+04

Failure rate: 0 out of 10.
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5.3 Data Simulation Example

Below is an example of using the toolbox to simulate data from a given model. (This pa-
rameter file can be found in examples/param files/sim hmm_independent.) The model is an
HMM with 4 hidden states with emission probabilities modeled as 10 conditionally indepen-
dent binary (0 or 1) Bernoulli distributions. The parameters of the model can be found in
examples/models/hmm _independent. The program will simulate 24 x 2 sequences of 10-component
binary vectors of length 90 each into the file examples/outputs/sim hmm independent. To run
the toolbox with this example, change the directory to examples/param files/ and run mvnhmm
sim_hmm_independent.

# Action
action simulation

# Type of the model
model_type hmm

# Number of hidden states
num_states 4

# Emission distribution
emission

independent 10 bernoulli 2

# Number of finite-valued vector components for the data
num_discrete_data_components 10

# Number of output data sequences
num_data_sequences 24

# Length of each sequence
data_sequence_length 90

10



# Output file
output ../outputs/sim_hmm_independent

# Model file name
model_filename ../models/hmm_independent

# Number of simulations per output sequence
num_simulations 2

5.4 Model Evaluation Scripts

The subdirectory batch contains a sample run of one of the batch perl scripts,
mvnhmm-batch-simple.perl. These scripts allow several actions of the program to be consecu-
tively, over a range of numbers of hidden states. (Note: No knowledge of perl needed to run
the scripts, only to modify the scripts.) To run the script, first create subdirectories data and
outputs. Place the data files used for the modeling in data. To view the parameters used with
scripts, enter the script name without inputs. The results in the outputs subdirectory are a re-
sult of a run mvnhmm-batch-simple.perl hmm 10 independent 24 90 0 O 5e-05 50 500 2 6.
This batch script trains HMM models on the binary data with 24 sequences of 90 10-dimensional
observations each. Models with number of hidden states between 2 and 6 are considered. Each
model is trained with 50 random restarts. For each model, 500 times the original data is simulated,
and the statistics of that data are calculated.

6 Other Features

Description of other features can be found in the full manual (to appear soon). File README is
the most up-to-date document on the available features and describes full functionality of the code
in a compact but dense manner. examples/param files contains a number of examples covering
most of the code’s functionality. Readers are encouraged to try them out.
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